5 research outputs found

    The expression and antigenicity of a truncated spike-nucleocapsid fusion protein of severe acute respiratory syndrome-associated coronavirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of effective drugs, controlling SARS relies on the rapid identification of cases and appropriate management of the close contacts, or effective vaccines for SARS. Therefore, developing specific and sensitive laboratory tests for SARS as well as effective vaccines are necessary for national authorities.</p> <p>Results</p> <p>Genes encoding truncated nucleocapsid (N) and spike (S) proteins of <it>SARSCoV </it>were cloned into the expression vector <it>pQE30 </it>and fusionally expressed in <it>Escherichia coli </it>M15. The fusion protein was analyzed for reactivity with SARS patients' sera and with anti-sera against the two human coronaviruses <it>HCoV </it>229E and <it>HCoV </it>OC43 by ELISA, IFA and immunoblot assays. Furthermore, to evaluate the antigen-specific humoral antibody and T-cell responses in mice, the fusion protein was injected into 6-week-old BALB/c mice and a neutralization test as well as a T-cell analysis was performed. To evaluate the antiviral efficacy of immunization, BALB/c mice were challenged intranasally with <it>SARSCoV </it>at day 33 post injection and viral loads were determined by fluorescent quantitative RT-PCR. Serological results showed that the diagnostic sensitivity and specificity of the truncated S-N fusion protein derived the SARS virus were > 99% (457/460) and 100.00% (650/650), respectively. Furthermore there was no cross-reactivity with other two human coronaviruses. High titers of antibodies to <it>SRASCoV </it>appeared in the immunized mice and the neutralization test showed that antibodies to the fusion protein could inhibit <it>SARSCoV</it>. The T cell proliferation showed that the fusion protein could induce an antigen-specific T-cell response. Fluorescent quantitative RT-PCR showed that BALB/c mice challenged intranasally with <it>SARSCoV </it>at day 33 post injection were completely protected from virus replication.</p> <p>Conclusion</p> <p>The truncated S-N fusion protein is a suitable immunodiagnostic antigen and vaccine candidate.</p

    Use of the COOH Portion of the Nucleocapsid Protein in an Antigen-Capturing Enzyme-Linked Immunosorbent Assay for Specific and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus

    No full text
    Antibody detection with a recombinant COOH portion of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid (N) protein, N13 (amino acids 221 to 422), was demonstrated to be more specific and sensitive than that with the full-length N protein, and an N13-based antigen-capturing enzyme-linked immunosorbent assay providing a convenient and specific test for serodiagnosis and epidemiological study of SARS was developed
    corecore