19 research outputs found

    A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults

    Get PDF
    Many components of modern living exert influence on the resident intestinal microbiota of humans with resultant impact on host health. For example, exercise-associated changes in the diversity, composition, and functional profiles of microbial populations in the gut have been described in cross-sectional studies of habitual athletes. However, this relationship is also affected by changes in diet, such as changes in dietary and supplementary protein consumption, that coincide with exercise. To determine whether increasing physical activity and/or increased protein intake modulates gut microbial composition and function, we prospectively challenged healthy but sedentary adults with a short-term exercise regime, with and without concurrent daily whey protein consumption. Metagenomics- and metabolomics-based assessments demonstrated modest changes in gut microbial composition and function following increases in physical activity. Significant changes in the diversity of the gut virome were evident in participants receiving daily whey protein supplementation. Results indicate that improved body composition with exercise is not dependent on major changes in the diversity of microbial populations in the gut. The diverse microbial characteristics previously observed in long-term habitual athletes may be a later response to exercise and fitness improvement. IMPORTANCE The gut microbiota of humans is a critical component of functional development and subsequent health. It is important to understand the lifestyle and dietary factors that affect the gut microbiome and what impact these factors may have. Animal studies suggest that exercise can directly affect the gut microbiota, and elite athletes demonstrate unique beneficial and diverse gut microbiome characteristics. These characteristics are associated with levels of protein consumption and levels of physical activity. The results of this study show that increasing the fitness levels of physically inactive humans leads to modest but detectable changes in gut microbiota characteristics. For the first time, we show that regular whey protein intake leads to significant alterations to the composition of the gut virome

    The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept.

    Get PDF
    PURPOSE: Adductor longus injuries are complex. The conflict between views in the recent literature and various nineteenth-century anatomy books regarding symphyseal and perisymphyseal anatomy can lead to difficulties in MRI interpretation and treatment decisions. The aim of the study is to systematically investigate the pyramidalis muscle and its anatomical connections with adductor longus and rectus abdominis, to elucidate injury patterns occurring with adductor avulsions. METHODS: A layered dissection of the soft tissues of the anterior symphyseal area was performed on seven fresh-frozen male cadavers. The dimensions of the pyramidalis muscle were measured and anatomical connections with adductor longus, rectus abdominis and aponeuroses examined. RESULTS: The pyramidalis is the only abdominal muscle anterior to the pubic bone and was found bilaterally in all specimens. It arises from the pubic crest and anterior pubic ligament and attaches to the linea alba on the medial border. The proximal adductor longus attaches to the pubic crest and anterior pubic ligament. The anterior pubic ligament is also a fascial anchor point connecting the lower anterior abdominal aponeurosis and fascia lata. The rectus abdominis, however, is not attached to the adductor longus; its lateral tendon attaches to the cranial border of the pubis; and its slender internal tendon attaches inferiorly to the symphysis with fascia lata and gracilis. CONCLUSION: The study demonstrates a strong direct connection between the pyramidalis muscle and adductor longus tendon via the anterior pubic ligament, and it introduces the new anatomical concept of the pyramidalis-anterior pubic ligament-adductor longus complex (PLAC). Knowledge of these anatomical relationships should be employed to aid in image interpretation and treatment planning with proximal adductor avulsions. In particular, MRI imaging should be employed for all proximal adductor longus avulsions to assess the integrity of the PLAC

    Movement Patterns and Muscular Function Before and After Onset of Sports-Related Groin Pain: A Systematic Review with Meta-analysis

    Get PDF
    BACKGROUND: Sports-related groin pain (SRGP) is a common entity in rotational sports such as football, rugby and hockey, accounting for 12-18 % of injuries each year, with high recurrence rates and often prolonged time away from sport. OBJECTIVE: This systematic review synthesises movement and muscle function findings to better understand deficits and guide rehabilitation. STUDY SELECTION: Prospective and retrospective cross-sectional studies investigating muscle strength, flexibility, cross-sectional area, electromyographic activation onset and magnitude in patients with SRGP were included. SEARCH METHODS: Four databases (MEDLINE, Web of Knowledge, EBSCOhost and EMBASE) were searched in June 2014. Studies were critiqued using a modified version of the Downs and Black Quality Index, and a meta-analysis was performed. RESULTS: Seventeen studies (14 high quality, 3 low quality; 8 prospective and 9 retrospective) were identified. Prospective findings: moderate evidence indicated decreased hip abduction flexibility as a risk factor for SRGP. Limited or very limited evidence suggested that decreased hip adduction strength during isokinetic testing at ~119°/s was a risk factor for SRGP, but no associations were found at ~30°/s or ~210°/s, or with peak torque angle. Decreased hip abductor strength in angular velocity in ~30°/s but not in ~119°/s and ~210°/s was found as a risk factor for SRGP. No relationships were found with hip internal or external rotation range of movement, nor isokinetic knee extension strength. Decreased isokinetic knee flexion strength also was a potential risk factor for SRGP, at a speed ~60°/s. Retrospective findings: there was strong evidence of decreased hip adductor muscle strength during a squeeze test at 45°, and decreased total hip external rotation range of movement (sum of both legs) being associated with SRGP. There was strong evidence of no relationship to abductor muscle strength nor unilateral hip internal and external rotation range of movement. Moderate evidence suggested that increased abduction flexibility and no change in total hip internal rotation range of movement (sum of both legs) were retrospectively associated with SRGP. Limited or very limited evidence (significant findings only) indicated decreased hip adductor muscle strength during 0° and 30° squeeze tests and during an eccentric hip adduction test, but a decrease in the isometric adductors-to-abductors strength ratio at speed 120°/s; decreased abductors-to-adductors activation ratio in the early phase in the moving leg as well as in all three phases in the weight-bearing leg during standing hip flexion; and increased hip flexors strength during isokinetic and decrease in transversus abdominis muscle resting thickness associated with SRGP. CONCLUSIONS: There were a number of significant movement and muscle function associations observed in athletes both prior to and following the onset of SRGP. The strength of findings was hampered by the lack of consistent terminology and diagnostic criteria, with there being clear guides for future research. Nonetheless, these findings should be considered in rehabilitation and prevention planning

    Athletic groin pain (part 1): a prospective anatomical diagnosis of 382 patients-clinical findings, MRI findings and patient-reported outcome measures at baseline

    Get PDF
    BACKGROUND: Athletic groin pain remains a common field-based team sports time-loss injury. There are few reports of non-surgically managed cohorts with athletic groin pain. AIM: To describe clinical presentation/examination, MRI findings and patient-reported outcome (PRO) scores for an athletic groin pain cohort. METHODS: All patients had a history including demographics, injury duration, sport played and standardised clinical examination. All patients underwent MRI and PRO score to assess recovery. A clinical diagnosis of the injured anatomical structure was made based on these findings. Statistical assessment of the reliability of accepted standard investigations undertaken in making an anatomical diagnosis was performed. RESULT: 382 consecutive athletic groin pain patients, all male, enrolled. Median time in pain at presentation was (IQR) 36 (16-75) weeks. Most (91%) played field-based ball-sports. Injury to the pubic aponeurosis (PA) 240 (62.8%) was the most common diagnosis. This was followed by injuries to the hip in 81 (21.2%) and adductors in 56 (14.7%) cases. The adductor squeeze test (90° hip flexion) was sensitive (85.4%) but not specific for the pubic aponeurosis and adductor pathology (negative likelihood ratio 1.95). Analysed in series, positive MRI findings and tenderness of the pubic aponeurosis had a 92.8% post-test probability. CONCLUSIONS: In this largest cohort of patients with athletic groin pain combining clinical and MRI diagnostics there was a 63% prevalence of PA injury. The adductor squeeze test was sensitive for athletic groin pain, but not specific individual pathologies. MRI improved diagnostic post-test probability. No hernia or incipient hernia was diagnosed. CLINICAL TRIAL REGISTRATION NUMBER: NCT02437942

    Athletic groin pain (part 2): a prospective cohort study on the biomechanical evaluation of change of direction identifies three clusters of movement patterns

    Get PDF
    BACKGROUND: Athletic groin pain (AGP) is prevalent in sports involving repeated accelerations, decelerations, kicking and change-of-direction movements. Clinical and radiological examinations lack the ability to assess pathomechanics of AGP, but three-dimensional biomechanical movement analysis may be an important innovation. AIM: The primary aim was to describe and analyse movements used by patients with AGP during a maximum effort change-of-direction task. The secondary aim was to determine if specific anatomical diagnoses were related to a distinct movement strategy. METHODS: 322 athletes with a current symptom of chronic AGP participated. Structured and standardised clinical assessments and radiological examinations were performed on all participants. Additionally, each participant performed multiple repetitions of a planned maximum effort change-of-direction task during which whole body kinematics were recorded. Kinematic and kinetic data were examined using continuous waveform analysis techniques in combination with a subgroup design that used gap statistic and hierarchical clustering. RESULTS: Three subgroups (clusters) were identified. Kinematic and kinetic measures of the clusters differed strongly in patterns observed in thorax, pelvis, hip, knee and ankle. Cluster 1 (40%) was characterised by increased ankle eversion, external rotation and knee internal rotation and greater knee work. Cluster 2 (15%) was characterised by increased hip flexion, pelvis contralateral drop, thorax tilt and increased hip work. Cluster 3 (45%) was characterised by high ankle dorsiflexion, thorax contralateral drop, ankle work and prolonged ground contact time. No correlation was observed between movement clusters and clinically palpated location of the participant's pain. CONCLUSIONS: We identified three distinct movement strategies among athletes with long-standing groin pain during a maximum effort change-of-direction task These movement strategies were not related to clinical assessment findings but highlighted targets for rehabilitation in response to possible propagative mechanisms. TRIAL REGISTRATION NUMBER: NCT02437942, pre results

    Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling.

    Get PDF
    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses
    corecore