23 research outputs found
Vibrational and rotational sequences in 101 Mo and 103,4 Ru studied via multinucleon transfer reactions
The near yrast states of 101 Mo and 103,104 Ru have been studied following their population via heavy ion multinucleon transfer reactions between a 136 Xe beam and a thin, self supporting 100 Mo target. The ground state sequence in 104 Ru can be understood as demonstrating a simple evolution from a quasi vibrational structure at lower spins to statically deformed, quasi rotational excitation involving the population of a pair of low Omega h11 2 neutron orbitals. The effect of the decoupled h11 2 orbital on this vibration to rotational evolution is demonstrated by an extension of the E GOS prescription to include odd A nuclei. The experimental results are also compared with self consistent Total Routhian Surface calculations which also highlight the polarising role of the highly aligned neutron h11 2 orbital in these nucle
Density functional theory calculations of the carbon ELNES of small diameter armchair and zigzag nanotubes: core-hole, curvature and momentum transfer orientation effects
We perform density functional theory calculations on a series of armchair and
zigzag nanotubes of diameters less than 1nm using the all-electron
Full-Potential(-Linearised)-Augmented-Plane-Wave (FPLAPW) method. Emphasis is
laid on the effects of curvature, the electron beam orientation and the
inclusion of the core-hole on the carbon electron energy loss K-edge. The
electron energy loss near-edge spectra of all the studied tubes show strong
curvature effects compared to that of flat graphene. The curvature induced
hybridisation is shown to have a more drastic effect on the
electronic properties of zigzag tubes than on those of armchair tubes. We show
that the core-hole effect must be accounted for in order to correctly reproduce
electron energy loss measurements. We also find that, the energy loss near edge
spectra of these carbon systems are dominantly dipole selected and that they
can be expressed simply as a proportionality with the local momentum projected
density of states, thus portraying the weak energy dependence of the transition
matrix elements. Compared to graphite, the ELNES of carbon nanotubes show a
reduced anisotropy.Comment: 25 pages, 15 figures, revtex4 submitted for publication to Phys. Rev.
Observation of an isomeric state in 197Au
A medium spin isomer in 197Au is identified with t1 2 150 5 ns following a multinucleon transfer reaction between an 850 MeV 136Xe beam and a 198Pt target. The transitions identified here are considered and possible configurations for the associated levels discussed. In addition, a newly observed out of beam transition in 195Au is briefly reporte
Sudden Cardiac Death in the Young: A Consensus Statement on Recommended Practices for Cardiac Examination by the Pathologist from the Society for Cardiovascular Pathology.
Sudden cardiac death is, by definition, an unexpected, untimely death caused by a cardiac condition in a person with known or unknown heart disease. This major international public health problem accounts for approximately 15-20% of all deaths. Typically more common in older adults with acquired heart disease, SCD also can occur in the young where the cause is more likely to be a genetically transmitted process. As these inherited disease processes can affect multiple family members, it is critical that these deaths are appropriately and thoroughly investigated. Across the United States, SCD cases in those less than 40 years of age will often fall under medical examiner/coroner jurisdiction resulting in scene investigation, review of available medical records and a complete autopsy including toxicological and histological studies. To date, there have not been consistent or uniform guidelines for cardiac examination in these cases. In addition, many medical examiner/coroner offices are understaffed and/or underfunded, both of which may hamper specialized examinations or studies (eg. molecular testing). Use of such guidelines by pathologists in cases of SCD in decedents aged 1 to 39 years of age could result in life-saving medical intervention for other family members. These recommendations also may provide support for underfunded offices to argue for the significance of this specialized testing. As cardiac examinations in the setting of SCD in the young fall under ME/C jurisdiction, this consensus paper has been developed with members of the Society of Cardiovascular Pathology working with cardiovascular pathology-trained, practicing forensic pathologists
Superdeformation in the N = Z Nucleus Ar: experimental, Deformed Mean Field, and Spherical Shell Model Descriptions
A superdeformed rotational band has been identified in 36Ar, linked to known low-spin states, and observed to its high-spin termination at Iπ = 16+. Cranked Nilsson-Strutinsky and spherical shell model calculations assign the band to a configuration in which four pf-shell orbitals are occupied, leading to a low-spin deformation β2 ≈ 0.45. Two major shells are active for both protons and neutrons, yet the valence space remains small enough to be confronted with the shell model. This band thus provides an ideal case to study the microscopic structure of collective rotational motion
E2 rotational invariants of <math altimg="si1.svg"><msubsup><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msubsup></math> and <math altimg="si2.svg"><msubsup><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msubsup></math> states for 106Cd: The emergence of collective rotation
International audienceThe collective structure of 106Cd is elucidated by multi-step Coulomb excitation of a 3.849 MeV/A beam of 106Cd on a 1.1 mg/cm2208Pb target using GRETINA-CHICO2 at ATLAS. Fourteen E2 matrix elements were obtained. The nucleus 106Cd is a prime example of emergent collectivity that possesses a simple structure: it is free of complexity caused by shape coexistence and has a small, but collectively active number of valence nucleons. This work follows in a long and currently active quest to answer the fundamental question of the origin of nuclear collectivity and deformation, notably in the cadmium isotopes. The results are discussed in terms of phenomenological models, the shell model, and Kumar-Cline sums of E2 matrix elements. The 〈02+||E2||21+〉 matrix element is determined for the first time, providing a total, converged measure of the electric quadrupole strength, 〈Q2〉, of the first-excited 21+ level relative to the 01+ ground state, which does not show an increase as expected of harmonic and anharmonic vibrations. Strong evidence for triaxial shapes in weakly collective nuclei is indicated; collective vibrations are excluded. This is contrary to the only other cadmium result of this kind in 114Cd by C. Fahlander et al. (1988) [38], which is complicated by low-lying shape coexistence near midshell