351 research outputs found

    Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy

    Get PDF
    Hashimoto's thyroiditis (HT), the most frequent autoimmune thyroid disorders (AITDs), is the leading cause of hypothyroidism in the iodine-sufficient areas of the world. About 20-30% of patients suffers from HT, whose cause is thought to be a combination of genetic susceptibility and environmental factors that causes the loss of immunological tolerance, with a consequent autoimmune attack to the thyroid tissue and appearance of the disease. The pathologic features of lymphocytic infiltration, especially of T cells, and follicular destruction are the histological hallmark of autoimmune thyroiditis (AIT), that lead to gradual atrophy and fibrosis. An important role in the immune-pathogenesis of AITDs is due to chemokines and cytokines. In about 20% of patients, AITDs are associated with other organ specific/systemic autoimmune disorders. Many studies have demonstrated the relationship between papillary thyroid cancer and AITD. The treatment of hypothyroidism, as result of AIT, consists in daily assumption of synthetic levothyroxine

    Immunomodulation of CXCL10 secretion by hepatitis C virus: Could CXCL10 be a prognostic marker of chronic hepatitis C?

    Get PDF
    Chemokine (C-X-C motif) ligand (CXCL)10 and other CXCR3 chemokines are involved in the pathogenesis of acute and \u201cchronic hepatitis C virus (HCV) infection\u201d (CHC). Here, we review the scientific literature about HCV and CXCL10. The combination of circulating CXCL10 and single nucleotide polymorphisms (SNPs) in IL-28B can identify patients with acute HCV infection most likely to undergo spontaneous HCV clearance and those in need of early antiviral therapy. In CHC, the HCV and intrahepatic interferon- (IFN-) \u3b3 drive a raised CXCL10 expression by sinusoidal endothelium and hepatocytes, thereby inducing the recruitment of CXCR3-expressing T cells into the liver; thus, CXCL10 plays an important role in the development of necroinflammation and fibrosis. Increased CXCL10 was significantly associated with the presence of active vasculitis in HCV-associated cryoglobulinemia, or with autoimmune thyroiditis in CHC. Pretreatment CXCL10 levels are predictive of early virological response and sustained virological response (SVR) to IFN-\u3b1 and ribavirin and may be useful in the evaluation of candidates for therapy. The occurrence of SNPs adjacent to IL-28B (rs12979860, rs12980275, and rs8099917), and CXCL10 below 150 pg/mL, independently predicted the first phase viral decline and rapid virological response, which in turn independently predicted SVR. Directly acting antiviral agents-mediated clearance of HCV is associated with the loss of intrahepatic immune activation by IFN-\u3b1, associated by decreased levels of CXCL10. In conclusion, CXCL10 is an important marker of HCV clearance and successful therapy in CHC patients. Whether CXCL10 is a novel therapeutic target in CHC will be evaluated

    Single-Atom Gating of Quantum State Superpositions

    Full text link
    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space--or Hilbert space--is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.Comment: Published online 6 April 2008 in Nature Physics; 17 page manuscript (including 4 figures) + 3 page supplement (including 2 figures); supplementary movies available at http://mota.stanford.ed

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369

    Prescribing Challenges after Bariatric Surgery

    Get PDF
    Obesity is an increasing problem in the UK, with over half the population being overweight or obese. The use of gastric surgery is increasing, with a 5% increase in 2016/17 compared to 2015/16. However, little is known about ideal drug formulations after bariatric surgery. An exploratory literature search of research databases was carried out to address this. We found that there was a dearth of high-quality primary studies available, with many studies using low numbers of participants. The major finding was of the need for increased vigilance and monitoring of patients after surgery

    Few-electron quantum dots for quantum computing

    Full text link
    Two tunnel-coupled few-electron quantum dots were fabricated in a GaAs/AlGaAs quantum well. The absolute number of electrons in each dot could be determined from finite bias Coulomb blockade measurements and gate voltage scans of the dots, and allows the number of electrons to be controlled down to zero. The Zeeman energy of several electronic states in one of the dots was measured with an in-plane magnetic field, and the g-factor of the states was found to be no different than that of electrons in bulk GaAs. Tunnel-coupling between dots is demonstrated, and the tunneling strength was estimated from the peak splitting of the Coulomb blockade peaks of the double dot.Comment: 11 pages, 5 figures. Website at http://meso.deas.harvard.ed

    Impaired immunogenicity to COVID-19 vaccines in autoimmune systemic diseases. High prevalence of non-response in different patients’ subgroups

    Get PDF
    Autoimmune systemic diseases (ASD) may show impaired immunogenicity to COVID-19 vaccines. Our prospective observational multicenter study aimed to evaluate the seroconversion after the vaccination cycle and at 6-12-month follow-up, as well the safety and efficacy of vaccines in preventing COVID-19. The study included 478 unselected ASD patients (mean age 59 ± 15 years), namely 101 rheumatoid arthritis (RA), 38 systemic lupus erythematosus (SLE), 265 systemic sclerosis (SSc), 61 cryoglobulinemic vasculitis (CV), and a miscellanea of 13 systemic vasculitis. The control group included 502 individuals from the general population (mean age 59 ± 14SD years). The immunogenicity of mRNA COVID-19 vaccines (BNT162b2 and mRNA-1273) was evaluated by measuring serum IgG-neutralizing antibody (NAb) (SARS-CoV-2 IgG II Quant antibody test kit; Abbott Laboratories, Chicago, IL) on samples obtained within 3 weeks after vaccination cycle. The short-term results of our prospective study revealed significantly lower NAb levels in ASD series compared to controls [286 (53–1203) vs 825 (451–1542) BAU/mL, p < 0.0001], as well as between single ASD subgroups and controls. More interestingly, higher percentage of non-responders to vaccine was recorded in ASD patients compared to controls [13.2% (63/478), vs 2.8% (14/502); p < 0.0001]. Increased prevalence of non-response to vaccine was also observed in different ASD subgroups, in patients with ASD-related interstitial lung disease (p = 0.009), and in those treated with glucocorticoids (p = 0.002), mycophenolate-mofetil (p < 0.0001), or rituximab (p < 0.0001). Comparable percentages of vaccine-related adverse effects were recorded among responder and non-responder ASD patients. Patients with weak/absent seroconversion, believed to be immune to SARS-CoV-2 infection, are at high risk to develop COVID-19. Early determination of serum NAb after vaccination cycle may allow to identify three main groups of ASD patients: responders, subjects with suboptimal response, non-responders. Patients with suboptimal response should be prioritized for a booster-dose of vaccine, while a different type of vaccine could be administered to non-responder individuals
    • …
    corecore