23 research outputs found
Spillover, hybridization, and persistence in schistosome transmission dynamics at the human-animal interface.
Zoonotic spillover and hybridization of parasites are major emerging public and veterinary health concerns at the interface of infectious disease biology, evolution, and control. Schistosomiasis is a neglected tropical disease of global importance caused by parasites of the Schistosoma genus, and the Schistosoma spp. system within Africa represents a key example of a system where spillover of animal parasites into human populations has enabled formation of hybrids. Combining model-based approaches and analyses of parasitological, molecular, and epidemiological data from northern Senegal, a region with a high prevalence of schistosome hybrids, we aimed to unravel the transmission dynamics of this complex multihost, multiparasite system. Using Bayesian methods and by estimating the basic reproduction number (R0 ), we evaluate the frequency of zoonotic spillover of Schistosoma bovis from livestock and the potential for onward transmission of hybrid S. bovis Ă— S. haematobium offspring within human populations. We estimate R0 of hybrid schistosomes to be greater than the critical threshold of one (1.76; 95% CI 1.59 to 1.99), demonstrating the potential for hybridization to facilitate spread and establishment of schistosomiasis beyond its original geographical boundaries. We estimate R0 for S. bovis to be greater than one in cattle (1.43; 95% CI 1.24 to 1.85) but not in other ruminants, confirming cattle as the primary zoonotic reservoir. Through longitudinal simulations, we also show that where S. bovis and S. haematobium are coendemic (in livestock and humans respectively), the relative importance of zoonotic transmission is predicted to increase as the disease in humans nears elimination
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Hybridized Zoonotic Schistosoma Infections Result in Hybridized Morbidity Profiles: A Clinical Morbidity Study amongst Co-Infected Human Populations of Senegal
Hybridization of infectious agents is a major emerging public and veterinary health concern at the interface of evolution, epidemiology, and control. Whilst evidence of the extent of hybridization amongst parasites is increasing, their impact on morbidity remains largely unknown. This may be predicted to be particularly pertinent where parasites of animals with contrasting pathogenicity viably hybridize with human parasites. Recent research has revealed that viable zoonotic hybrids between human urogenital Schistosoma haematobium with intestinal Schistosoma species of livestock, notably Schistosoma bovis, can be highly prevalent across Africa and beyond. Examining human populations in Senegal, we found increased hepatic but decreased urogenital morbidity, and reduced improvement following treatment with praziquantel, in those infected with zoonotic hybrids compared to non-hybrids. Our results have implications for effective monitoring and evaluation of control programmes, and demonstrate for the first time the potential impact of parasite hybridizations on host morbidity
Molecular diagnosis of urogenital schistosomiasis in pre-school children, school-aged children and women of reproductive age at community level in central Senegal
Abstract Background Urogenital schistosomiasis is a major public health concern in sub-Saharan Africa. In Senegal, the disease is endemic in all regions of the country. Recently, WHO strongly recommended including pre-school children and women of reproductive age during a mass drug administration campaign. It is important to describe the burden of the disease in these group at risk using innovative diagnostic tools. This study aimed to assess the use of real-time PCR in the detection of schistosomiasis cases at the community level in a seasonal transmission area. Methods A cross-sectional survey was carried out in Niakhar located in the centre of Senegal. Pre-schoolchildren, school-aged children and female adolescents and adults were invited to participate in the study in April 2018. Urine samples were collected and examined using Hemastix reagent strips, filtration technique and real-time PCR. Schistosoma haematobium was detected, identified by targeting the Dra1 gene. The prevalence of urogenital schistosomiasis was determined for each group and the performance of the real-time PCR was compared with the conventional techniques. Results A total of 428 participants were enrolled in this study including 87 (20.4%) pre-school children (1–5 years), 262 (61.3%) school-aged children between (5–14 years), 17 (3.9%) adolescents (15–17 years) and 62 (14.4%) female adults. The comparison of the diagnostic techniques has shown that the prevalence of urogenital schistosomiasis is higher using molecular technique (34.6%) compared to microscopy (20.3%). The percentage rate of haematuria using Hemastix was 23.1%. School-aged children between 5 and 14 years old were the most affected with 29.0% and 43.1% under microscopy and RT-PCR, respectively. In female participants, microscopic prevalence decreases with age, from 21.4% in school-aged children to 17.6% in adolescents and 9.7% in adults. There was good correlation between the number of eggs per 10 ml and the cycle threshold range. Conclusion These results show the importance of using molecular tools in the surveillance of schistosomiasis particularly in pre-school children and women of reproductive age. Graphical Abstrac
MALDI-TOF Mass Spectrometry: A Powerful Tool for Clinical Microbiology at Hopital Principal de Dakar, Senegal (West Africa)
Our team in Europe has developed the routine clinical laboratory identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). To evaluate the utility of MALDI-TOF MS in tropical Africa in collaboration with local teams, we installed an apparatus in the Hopital Principal de Dakar (Senegal), performed routine identification of isolates, and confirmed or completed their identification in France. In the case of discordance or a lack of identification, molecular biology was performed. Overall, 153/191(80.1%) and 174/191(91.1%) isolates yielded an accurate and concordant identification for the species and genus, respectively, with the 2 different MALDI-TOF MSs in Dakar and Marseille. The 10 most common bacteria, representing 94.2% of all bacteria routinely identified in the laboratory in Dakar (Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus haemolyticus, Enterobacter cloacae, Enterococcus faecalis, and Staphylococcus epidermidis) were accurately identified with the MALDI-TOF MS in Dakar. The most frequent misidentification in Dakar was at the species level for Achromobacter xylosoxidans, which was inaccurately identified as Achromobacter denitrificans, and the bacteria absent from the database, such as Exiguobacterium aurientacum or Kytococcus schroeteri, could not be identified. A few difficulties were observed with MALDI-TOF MS for Bacillus sp. or oral streptococci. 16S rRNA sequencing identified a novel bacterium, "Necropsobacter massiliensis." The robust identification of microorganisms by MALDI-TOF MS in Dakar and Marseille demonstrates that MALDI-TOF MS can be used as a first-line tool in clinical microbiology laboratories in tropical countries
The ongoing revolution of MALDI-TOF mass spectrometry for microbiology reaches tropical Africa
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) represents a revolution in routine pathogen identification in clinical microbiology laboratories. A MALDI-TOF MS was introduced to tropical Africa in the clinical microbiology laboratory of the Hopital Principal de Dakar (Senegal) and used for routine pathogen identification. Using MS, 2,429 bacteria and fungi isolated from patients were directly assayed, leading to the identification of 2,082 bacteria (85.7%) and 206 fungi (8.5%) at the species level, 109 bacteria (4.5%) at the genus level, and 16 bacteria (0.75%) at the family level. Sixteen isolates remained unidentified (0.75%). Escherichia coli was the most prevalent species (25.8%) followed by Klebsiella pneumoniae (14.8%), Streptococcus agalactiae (6.2%), Acinetobacter baumannii (6.1%), Pseudomonas aeruginosa (5.9%), and Staphylococcus aureus (5.9%). MALDI-TOF MS has also enabled the detection of rare bacteria and fungi. MALDI-TOF MS is a powerful tool for the identification of bacterial and fungal species involved in infectious diseases in tropical Africa
Recommended from our members
Plagiorchis sp. in small mammals of Senegal and the potential emergence of a zoonotic trematodiasis
Trematodes of the genus Plagiorchis have a wide geographical distribution and can exploit a variety of hosts. The occurrence and zoonotic potential of Plagiorchis spp. have been characterised across several countries in Asia; in contrast, information on Plagiorchis parasites in Africa remains anecdotal. We isolated a previously undescribed Plagiorchis species from the biliary tract and small intestine of 201 out of 427 small mammals collected in the region of Lake Guiers, Senegal, with local prevalence ranging from 38.6% to 77.0%. Conversely, Plagiorchis isolates were not observed in the 244 small mammals sampled in and around the town of Richard Toll, Senegal. Molecular phylogenetics of the internal transcribed spacer region, nuclear ribosomal DNA, and of the cytochrome c oxidase subunit 1 gene, mitochondrial DNA, supported the monophyly and multi-host spectrum of this newly discovered West African Plagiorchis species. Sequencing of individual cercariae shed by Radix natalensis (Gastropoda: Lymnaeidae) suggested that these freshwater snails may act as suitable first intermediate hosts. Phylogenetic analysis yielded a highly resolved topology indicating two different clades, one composed by Plagiorchis spp. infecting rodents, insectivores, and birds, while the other included parasites of bats. Our findings showed the low host specificity and high prevalence of the isolated Plagiorchis sp. in the Lake Guiers region, with Hubert's multimammate mice (Mastomys huberti) appearing to play a primary role in the epidemiology of this parasite. The results raise concern about the zoonotic potential of Plagiorchis sp. in local communities of the Lake Guiers region, and highlight food-borne trematodiases and their link to land-use change as a neglected public health issue in regions of West Africa