44 research outputs found

    Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins

    Get PDF
    Retrograde transport allows proteins and lipids to leave the endocytic pathway to reach other intracellular compartments, such as trans-Golgi network (TGN)/Golgi membranes, the endoplasmic reticulum and, in some instances, the cytosol. Here, we have used RNA interference against the SNARE proteins syntaxin 5 and syntaxin 16, combined with recently developed quantitative trafficking assays, morphological approaches and cell intoxication analysis to show that these SNARE proteins are not only required for efficient retrograde transport of Shiga toxin, but also for that of an endogenous cargo protein - the mannose 6-phosphate receptor - and for the productive trafficking into cells of cholera toxin and ricin. We have found that the function of syntaxin 16 was specifically required for, and restricted to, the retrograde pathway. Strikingly, syntaxin 5 RNA interference protected cells particularly strongly against Shiga toxin. Since our trafficking analysis showed that apart from inhibiting retrograde endosome-to-TGN transport, the silencing of syntaxin 5 had no additional effect on Shiga toxin endocytosis or trafficking from TGN/Golgi membranes to the endoplasmic reticulum, we hypothesize that syntaxin 5 also has trafficking-independent functions. In summary, our data demonstrate that several cellular and exogenous cargo proteins use elements of the same SNARE machinery for efficient retrograde transport between early/recycling endosomes and TGN/Golgi membranes

    In vitro functional rescue by ivacaftor of an ABCB11 variant involved in PFIC2 and intrahepatic cholestasis of pregnancy

    No full text
    International audienceBackgroundABCB11 variations are responsible for a spectrum of rare liver diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) and intrahepatic cholestasis of pregnancy (ICP). Current medical treatment of these conditions mostly relies on ursodeoxycholic acid with limited efficacy. We report on the in vitro study of the p.A257V missense variant of ABCB11 identified in a PFIC2 patient and in her mother who experienced ICP.ResultsThe Ala257 residue is located outside the ATP-binding site of ABCB11. We show that the p.A257V variant of ABCB11 is correctly expressed at the canalicular membrane of HepG2 cells but that its function significantly decreased when studied in MDCK cells. This functional defect can be fully rescued by Ivacaftor.ConclusionIvacaftor could be considered as a new pharmacological tool able to respond to an unmet medical need for patients with ICP and PFIC2 due to ABCB11 variations affecting ABCB11 function, even when the residue involved is not located in an ATP-binding site of ABCB11

    A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression

    No full text
    International audienceABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane

    Molecular Regulation of Canalicular ABC Transporters

    No full text
    International audienceThe ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters' folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms

    In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators

    No full text
    International audienceABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in Citation: Mareux, E.; Lapalus, M.; Ben Saad, A.; Zelli, R.; Lakli, M.; Riahi, Y.; Almes, M.; Banet, M.; Callebaut, I.; Decout, J.-L.; et al. In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators. Int. J. Mol. Sci. 2022, 23, 10758. https:// doi.org/10.3390/ijms231810758 Academic Editor: Cesare Indiveri Received: 11 August 2022 Accepted: 13 September 2022 Published: 15 September 2022 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin–Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter

    ABCB4 colocalizes and coimmunoprecipitates with EBP50.

    No full text
    <p>(A) ABCB4-wt-expressing HepG2 cells were fixed, permeabilized and stained with anti-ABCB4 antibody followed by anti-EBP50 antibody and then incubated with Alexa-Fluor-488-and 594-conjugated secondary antibodies and visualized by confocal microscopy. Nuclei were stained with DRAQ 5 (blue). Asterisks indicate bile canaliculi. Bar, 10 μm. (B) Cell lysates of HepG2 cells stably transfected with ABCB4-wt or ABCB4-ΔQNL or cell lysates of primary human hepatocytes (PhH) were incubated with anti-ABCB4 antibody or mouse imununoglobulin G (IgG) covalently linked to agarose beads. The coimmunoprecipitated complex was immunoblotted with anti-ABCB4 and anti-EBP50 antibodies.</p

    Effect of EBP50 silencing.

    No full text
    <p>(A) HepG2 cells expressing ABCB4-wt or ABCB4-ΔQNL were transfected with EBP50 siRNA or scramble siRNA (Scr). After 60 hours of transfection, cell lysates were subjected to western blot analysis. (B) Amounts of ABCB4 were quantified from immunoblots by densitometry. ABCB4 levels were expressed as a percentage of total expression in HepG2 cell transfected with scramble siRNA. Means (±SEM) of at least three independent experiments are shown. *<i>P</i><0.05 for ABCB4-wt; n.s., not significant.</p
    corecore