1,476 research outputs found

    Effects of electromagnetic waves on the electrical properties of contacts between grains

    Full text link
    A DC electrical current is injected through a chain of metallic beads. The electrical resistances of each bead-bead contacts are measured. At low current, the distribution of these resistances is large and log-normal. At high enough current, the resistance distribution becomes sharp and Gaussian due to the creation of microweldings between some beads. The action of nearby electromagnetic waves (sparks) on the electrical conductivity of the chain is also studied. The spark effect is to lower the resistance values of the more resistive contacts, the best conductive ones remaining unaffected by the spark production. The spark is able to induce through the chain a current enough to create microweldings between some beads. This explains why the electrical resistance of a granular medium is so sensitive to the electromagnetic waves produced in its vicinity.Comment: 4 pages, 5 figure

    MILES extended: Stellar population synthesis models from the optical to the infrared

    Get PDF
    We present the first single-burst stellar population models which covers the optical and the infrared wavelength range between 3500 and 50000 Angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical with our new infrared models that are based on the IRTF (Infrared Telescope Facility) library. The latter are available only for a limited range in terms of both age and metallicity. Our combined single-burst stellar population models were calculated for ages larger than 1 Gyr, for metallicities between [Fe/H] = -0.40 and 0.26, for initial mass functions of various types and slopes, and on the basis of two different sets of isochrones. They are available to the scientific community on the MILES web page. We checked the internal consistency of our models and compared their colour predictions to those of other models that are available in the literature. Optical and near infrared colours that are measured from our models are found to reproduce the colours well that were observed for various samples of early-type galaxies. Our models will enable a detailed analysis of the stellar populations of observed galaxies.Comment: 9 pages, 10 figures, published in A&

    Formation and evolution of dwarf early-type galaxies in the Virgo cluster II. Kinematic Scaling Relations

    Get PDF
    We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includes rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.Comment: 14 pages, 9 figures, 2 appendixes. Accepted for publication in A&

    Observing the evaporation transition in vibro-fluidized granular matter

    Full text link
    By shaking a sand box the grains on the top start to jump giving the picture of evaporating a sand bulk, and a gaseous transition starts at the surface granular matter (GM) bed. Moreover the mixture of the grains in the whole bed starts to move in a cooperative way which is far away from a Brownian description. In a previous work we have shown that the key element to describe the statistics of this behavior is the exclusion of volume principle, whereby the system obeys a Fermi configurational approach. Even though the experiment involves an archetypal non-equilibrium system, we succeeded in defining a global temperature, as the quantity associated to the Lagrange parameter in a maximum entropic statistical description. In fact in order to close our approach we had to generalize the equipartition theorem for dissipative systems. Therefore we postulated, found and measured a fundamental dissipative parameter, written in terms of pumping and gravitational energies, linking the configurational entropy to the collective response for the expansion of the centre of mass (c.m.) of the granular bed. Here we present a kinetic approach to describe the experimental velocity distribution function (VDF) of this non-Maxwellian gas of macroscopic Fermi-like particles (mFp). The evaporation transition occurs mainly by jumping balls governed by the excluded volume principle. Surprisingly in the whole range of low temperatures that we measured this description reveals a lattice-gas, leading to a packing factor, which is independent of the external parameters. In addition we measure the mean free path, as a function of the driving frequency, and corroborate our prediction from the present kinetic theory.Comment: 6 pages, 4 figures, submitted for publication September 1st, 200

    Single Stellar Populations in the Near-Infrared - I. Preparation of the IRTF spectral stellar library

    Get PDF
    We present a detailed study of the stars of the IRTF spectral library to understand its full extent and reliability for use with Stellar Population (SP) modeling. The library consist of 210 stars, with a total of 292 spectra, covering the wavelength range of 0.94 to 2.41 micron at a resolution R = 2000. For every star we infer the effective temperature (Teff), gravity (logg) and metallicity ([Z/Zsun]) using a full-spectrum fitting approach in a section of the K band (2.19 to 2.34 micron) and temperature-NIR colour relations. We test the flux calibration of these stars by calculating their integrated colours and comparing them with the Pickles library colour-temperature relations. We also investigate the NIR colours as a function of the calculated effective temperature and compared them in colour-colour diagrams with the Pickles library. This latter test shows a good broad-band flux calibration, important for the SP models. Finally, we measure the resolution R as a function of wavelength. We find that the resolution increases as a function of lambda from about 6 angstrom in J to 10 angstrom in the red part of the K-band. With these tests we establish that the IRTF library, the largest currently available general library of stars at intermediate resolution in the NIR, is an excellent candidate to be used in stellar population models. We present these models in the next paper of this series.Comment: 17 pages, 19 figures. Accepted for publication in Astronomy and Astrophysic

    Laboratory Measurements Of White Dwarf Photospheric Spectral Lines: H Beta

    Get PDF
    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of H beta and fit this line using different theoretical line profiles to diagnose electron density, n(e), and n = 2 level population, n2. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from n(e) similar to 4 to similar to 30 x 10(16) cm(-3) throughout a 120-ns evolution of our plasma. Also, we observe n(2) to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within similar to 55 ns to become consistent with LTE. This supports our electrontemperature determination of T-e similar to 1.3 eV (similar to 15,000 K) after this time. At n(e) greater than or similar to 10(17) cm(-3), we find that computer-simulation-based line-profile calculations provide better fits (lower reduced chi(2)) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.Laboratory Directed Research and Development programUnited States Department of Energy DE-AC04-94AL85000, DE-SC0010623National Science Foundation DGE-1110007Astronom

    WHAT HAPPENED TO THE COAL FORESTS DURING PENNSYLVANIAN GLACIAL PHASES?

    Full text link
    • …
    corecore