1,559 research outputs found

    Some aspects of electrical conduction in granular systems of various dimensions

    Get PDF
    We report on measurements of the electrical conductivity in both a 2D triangular lattice of metallic beads and in a chain of beads. The voltage/current characteristics are qualitatively similar in both experiments. At low applied current, the voltage is found to increase logarithmically in a good agreement with a model of widely distributed resistances in series. At high enough current, the voltage saturates due to the local welding of microcontacts between beads. The frequency dependence of the saturation voltage gives an estimate of the size of these welded microcontacts. The DC value of the saturation voltage (~ 0.4 V per contact) gives an indirect measure of the number of welded contact carrying the current within the 2D lattice. Also, a new measurement technique provides a map of the current paths within the 2D lattice of beads. For an isotropic compression of the 2D granular medium, the current paths are localized in few discrete linear paths. This quasi-onedimensional nature of the electrical conductivity thus explains the similarity between the characteristics in the 1D and 2D systems.Comment: To be published in The European Physical Journal

    Effects of electromagnetic waves on the electrical properties of contacts between grains

    Full text link
    A DC electrical current is injected through a chain of metallic beads. The electrical resistances of each bead-bead contacts are measured. At low current, the distribution of these resistances is large and log-normal. At high enough current, the resistance distribution becomes sharp and Gaussian due to the creation of microweldings between some beads. The action of nearby electromagnetic waves (sparks) on the electrical conductivity of the chain is also studied. The spark effect is to lower the resistance values of the more resistive contacts, the best conductive ones remaining unaffected by the spark production. The spark is able to induce through the chain a current enough to create microweldings between some beads. This explains why the electrical resistance of a granular medium is so sensitive to the electromagnetic waves produced in its vicinity.Comment: 4 pages, 5 figure

    Single Stellar Populations in the Near-Infrared - I. Preparation of the IRTF spectral stellar library

    Get PDF
    We present a detailed study of the stars of the IRTF spectral library to understand its full extent and reliability for use with Stellar Population (SP) modeling. The library consist of 210 stars, with a total of 292 spectra, covering the wavelength range of 0.94 to 2.41 micron at a resolution R = 2000. For every star we infer the effective temperature (Teff), gravity (logg) and metallicity ([Z/Zsun]) using a full-spectrum fitting approach in a section of the K band (2.19 to 2.34 micron) and temperature-NIR colour relations. We test the flux calibration of these stars by calculating their integrated colours and comparing them with the Pickles library colour-temperature relations. We also investigate the NIR colours as a function of the calculated effective temperature and compared them in colour-colour diagrams with the Pickles library. This latter test shows a good broad-band flux calibration, important for the SP models. Finally, we measure the resolution R as a function of wavelength. We find that the resolution increases as a function of lambda from about 6 angstrom in J to 10 angstrom in the red part of the K-band. With these tests we establish that the IRTF library, the largest currently available general library of stars at intermediate resolution in the NIR, is an excellent candidate to be used in stellar population models. We present these models in the next paper of this series.Comment: 17 pages, 19 figures. Accepted for publication in Astronomy and Astrophysic

    Capillary wave turbulence on a spherical fluid surface in low gravity

    Get PDF
    We report the observation of capillary wave turbulence on the surface of a fluid layer in a low-gravity environment. In such conditions, the fluid covers all the internal surface of the spherical container which is submitted to random forcing. The surface wave amplitude displays power-law spectrum over two decades in frequency, corresponding to wavelength from mmmm to a few cmcm. This spectrum is found in roughly good agreement with wave turbulence theory. Such a large scale observation without gravity waves has never been reached during ground experiments. When the forcing is periodic, two-dimensional spherical patterns are observed on the fluid surface such as subharmonic stripes or hexagons with wavelength satisfying the capillary wave dispersion relation

    On the origin of intermittency in wave turbulence

    Get PDF
    Using standard signal processing tools, we experimentally report that intermittency of wave turbulence on the surface of a fluid occurs even when two typical large-scale coherent structures (gravity wave breakings and bursts of capillary waves on steep gravity waves) are not taken into account. We also show that intermittency depends on the power injected into the waves. The dependence of the power-law exponent of the gravity-wave spectrum on the forcing amplitude cannot be also ascribed to these coherent structures. Statistics of these both events are studied.Comment: To be published in EP

    Experimental study of the inverse cascade in gravity wave turbulence

    Get PDF
    We perform experiments to study the inverse cascade regime of gravity wave turbulence on the surface of a fluid. Surface waves are forced at an intermediate scale corresponding to the gravity-capillary wavelength. In response to this forcing, waves at larger scales are observed. The spectrum of their amplitudes exhibits a frequency-power law at high enough forcing. Both observations are ascribed to the upscale wave action transfers of gravity wave turbulence. The spectrum exponent is close to the value predicted by the weak turbulence theory. The spectrum amplitude is found to scale linearly with the mean injected power. We measure also the distributions of the injected power fluctuations in the presence of upscale (inverse) transfers or in the presence of a downscale (direct) cascade in gravity wave turbulence.Comment: in press in EPL (2011

    Comentário III

    Get PDF

    Observation of intermittency in wave turbulence

    Get PDF
    We report the observation of intermittency in gravity-capillary wave turbulence on the surface of mercury. We measure the temporal fluctuations of surface wave amplitude at a given location. We show that the shape of the probability density function of the local slope increments of the surface waves strongly changes across the time scales. The related structure functions and the flatness are found to be power laws of the time scale on more than one decade. The exponents of these power laws increase nonlinearly with the order of the structure function. All these observations show the intermittent nature of the increments of the local slope in wave turbulence. We discuss the possible origin of this intermittency.Comment: new version to Phys. Rev. Let
    • …
    corecore