529 research outputs found

    A generalized Stefan model accounting for system memory and non-locality

    Get PDF
    The Stefan problem, involving the tracking of an evolving phase-change front, is the prototypical example of a moving boundary problem. In basic one- dimensional problems it is well known that the front advances as the square root of time. When memory or non-locality are introduced into the system however, this classic signal may be anomalous; replaced by a power-law advance with a time exponent that differs from n = 1/2. Up to now memory treatments in Stefan problem models have only been able to reproduce sub-diffusive front movements with exponents n 1/2. In the present paper, using a generalized Caputo fractional derivative operator, we introduce new memory and non-local treatment for Stefan problems. On considering a limit case Stefan problem, related to the melting problem, we are able to show that, this gen- eral treatment can not only produce arbitrary power-law in time predictions for the front movement but, in the case of memory treatments, can also produce non-power-law anomalous behaviors. Further, also in the context of the limit problem, we are able to establish an equivalence between non-locality and a space varying conductivity and memory and a time varying conductivity

    GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3

    Full text link
    The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R=50,000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and iron-peak elements such as Ni, Cr, and Cu, alpha (O, Mg, Si, Ca, Ti), other light elements (C, N, F, Na, Al, and Sc), and some s-process elements (Y, Sr). We found average half-solar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe] and enhancement of [N/Fe], consistent with standard CN burning, and low 12C/13C abundance ratios (between 9 and 11), which require extra-mixing processes in the stellar interiors during the post-main sequence evolution. We also found local standard of rest V(LSR)=106 km/s and heliocentric V(HEL)=90 km/s radial velocities with a dispersion of 2.3 km/s. The inferred radial velocities, abundances, and abundance patterns of RSGC3 are very similar to those previously measured in the other two young clusters of the Scutum complex, RSGC1 and RSGC2, suggesting a common kinematics and chemistry within the Scutum complex

    Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with GIANO-TNG

    Get PDF
    Aims Determining the intensity of lines and continuum airglow emission in the H-band is important for the design of faint-object infrared spectrographs. Existing spectra at low/medium resolution cannot disentangle the true sky-continuum from instrumental effects (e.g. diffuse light in the wings of strong lines). We aim to obtain, for the first time, a high resolution infrared spectrum deep enough to set significant constraints on the continuum emission between the lines in the H-band. Methods During the second commissioning run of the GIANO high-resolution infrared spectrograph at La Palma Observatory, we pointed the instrument directly to the sky and obtained a deep spectrum that extends from 0.97 to 2.4 micron. Results The spectrum shows about 1500 emission lines, a factor of two more than in previous works. Of these, 80% are identified as OH transitions; half of these are from highly excited molecules (hot-OH component) that are not included in the OH airglow emission models normally used for astronomical applications. The other lines are attributable to O2 or unidentified. Several of the faint lines are in spectral regions that were previously believed to be free of line emission. The continuum in the H-band is marginally detected at a level of about 300 photons/m^2/s/arcsec^2/micron, equivalent to 20.1 AB-mag/arcsec^2. The observed spectrum and the list of observed sky-lines are published in electronic format. Conclusions Our measurements indicate that the sky continuum in the H-band could be even darker than previously believed. However, the myriad of airglow emission lines severely limits the spectral ranges where very low background can be effectively achieved with low/medium resolution spectrographs. We identify a few spectral bands that could still remain quite dark at the resolving power foreseen for VLT-MOONS (R ~6,600).Comment: 7 pages, 4 figures, to be published in Astronomy & Astrophysic

    GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC2

    Full text link
    The inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R~50,000) near-infrared spectra of three red supergiants in the young Scutum cluster RSGC2. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to identify several tens of atomic and molecular lines suitable for chemical abundance determinations. By means of spectral synthesis and line equivalent width measurements, we obtained abundances of Fe and other iron-peak elements such as V, Cr, Ni, of alpha (O, Mg, Si, Ca and Ti) and other light elements (C, N, Na, Al, K, Sc), and of some s-process elements (Y, Sr). We found iron abundances between half and one third solar and solar-scaled [X/Fe] abundance patterns of iron-peak, alpha and most of the light elements, consistent with a thin-disk chemistry. We found a depletion of [C/Fe] and enhancement of [N/Fe], consistent with CN burning, and low 12C/13C abundance ratios (between 9 and 11), requiring extra-mixing processes in the stellar interiors during the post-main sequence evolution. Finally, we found a slight [Sr/Fe] enhancement and a slight [Y/Fe] depletion (by a factor of <=2), with respect to solar.Comment: Paper accepted on A&

    Mid-to-late Holocene upper slope contourite deposits off Capo Vaticano (Mediterranean Sea): High-resolution record of contourite cyclicity, bottom current variability and sandy facies

    Get PDF
    none13noThe upper continental slope offshore Capo Vaticano (southern Tyrrhenian Sea) is characterized by a contourite depositional system with well-developed elongated sediment drifts. This system is related to a northward paleo-bottom current, similar to the present-day modified-Levantine Intermediate Water (modified-LIW) flowing from the Messina Strait. In this work, we show results from an integrated analysis of descriptive oceanography, high-resolution seismic profiles and core data (i.e., grain size, foraminiferal assemblages, tephrostratigraphy and AMS radiocarbon dating) collected from the crest and moat sectors of drift deposits. The studied succession formed since the mid Holocene, under the action of the modified-LIW and the stratigraphic architecture indicates an upslope migration of the moat and rather stable position of the crest sector. Grain-size features recorded from two sediment cores indicate the occurrence of a succession of complete bi-gradational sand-rich contourite sequences. Sandy facies were observed both as lag deposits formed in active moat channel and as coarser intervals of bi-gradational sequences forming drift deposits close to its crest. Their occurrence would highlight that upper slope environments impacted by intermediate water masses and proximal to sandy sources may represent favorable settings for accumulation of sandy sediment. The moat sector is characterized by a more complex stratigraphic record, where either moat sedimentation or lateral deposition of finer sediment occur, suggesting that further investigation is required to better understand this complex element of contourite systems. Based on available age information, some of the bi-gradational sequences probably formed during the Dark Age Cold Period, providing example of a small-scale cyclicity of contourite deposition, likely related to short-term (possibly multicentennial scale) fluctuations of the paleo modified-LIW. According to age constraints and analysis of foraminiferal assemblages, these fluctuations were likely governed by climate variations, with a weaker activity during warmer periods and faster currents during colder events.openMartorelli E., Bosman A., Casalbore D., Chiocci F., Conte A.M., Di Bella L., Ercilla G., Falcini F., Falco P., Frezza V., Gaglianone G., Giaccio B., Mancini M.Martorelli, E.; Bosman, A.; Casalbore, D.; Chiocci, F.; Conte, A. M.; Di Bella, L.; Ercilla, G.; Falcini, F.; Falco, P.; Frezza, V.; Gaglianone, G.; Giaccio, B.; Mancini, M
    • …
    corecore