
A generalized Stefan model accounting for system
memory and non-locality

R. Garra 1

BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009

Bilbao, Basque Country, Spain

F. Falcini

ISMAR-CNR, Via Fosso del Cavaliere, 100, 00133 Rome, Italy

V.R. Voller

Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500

Pillsbury Drive SE, Minneapolis, MN 55455, USA

G. Pagnini

Ikerbasque – Basque Foundation for Science, Calle de Maŕıa Dı́az de Haro 3, E-48013
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Abstract

The Stefan problem, involving the tracking of an evolving phase-change front,

is the prototypical example of a moving boundary problem. In basic one-

dimensional problems it is well known that the front advances as the square

root of time. When memory or non-locality are introduced into the system

however, this classic signal may be anomalous; replaced by a power-law advance

with a time exponent that differs from n = 1/2. Up to now memory treatments

in Stefan problem models have only been able to reproduce sub-diffusive front

movements with exponents n < 1/2 and non-local treatments have only been

able to reproduce super-diffusive behavior n > 1/2. In the present paper, using

a generalized Caputo fractional derivative operator, we introduce new memory

and non-local treatment for Stefan problems. On considering a limit case Stefan
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problem, related to the melting problem, we are able to show that, this gen-

eral treatment can not only produce arbitrary power-law in time predictions for

the front movement but, in the case of memory treatments, can also produce

non-power-law anomalous behaviors. Further, also in the context of the limit

problem, we are able to establish an equivalence between non-locality and a

space varying conductivity and memory and a time varying conductivity.

Keywords: Stefan problems, fractional moving boundary problems, melting

processes, anomalous diffusion.

1. Introduction

A classical free boundary problem, generally referred as the Stefan problem

[1], concerns the study of the transient diffusion-controlled melting/solidification

(phase change) of a solid/liquid adjacent to a heated/cooled surface. In the one-

dimensional form of this problem, the time-dependent position of the liquid-solid5

interface s(t), relative to the heated/cooled surface, advances as the square root

of time, s(t) ∼ tn, n = 1/2 [1], which is the expected normal behavior for a

diffusion process. Experimental observations of Stefan like and related phase-

change problems, e.g., frost growth [2] and moisture infiltration [3], however,

indicate that in some physical settings different time exponents, i.e., n > 1/210

(super-diffusive) or n < 1/2 (sub-diffusive), can manifest. These observations

have motivated theoretical studies to investigate general Stefan models formu-

lations that can produce anomalous behaviors [4, 5, 6, 7, 8, 9, 10]. We also refer

to the recent discussion paper [11] and the references therein about fractional

Stefan problems.15

The recent work in [12] provides an extensive review on the theory and

applications of anomalous behavior in heat transfer system. One method to

treat anomalous behavior is by the introduction of a memory into the sys-

tem of interest, requiring that the current state of the system depends on a

weighting (usually decaying) of previous states in time; this can be achieved20

in Stefan models by replacing the transient terms in the governing equations
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with a 0 < ν ≤ 1 order time-fractional derivative, representing a convolution

in time [4, 5, 6, 7, 8, 9]. An alternative approach is to invoke a non-local be-

havior in which the operation of a process at a given space point in the system

depends not just on the conditions at that point but also on a weighting of the25

current conditions throughout the whole domain; this can be achieved in Stefan

models by replacing the temperature gradient in the heat flux definition with a

0 < ν ≤ 1 order space-fractional derivative representing a convolution in space

[4, 7, 8, 9]. Voller [8], working with a limit case Stefan problem related to melt-

ing process, investigates how replacing the transient and gradient terms with30

Caputo fractional derivatives [13] of order 0 < ν < 1, representing, in turn, the

effects of memory (time-fractional) and non-locality (space-fractional), produces

predictions for the power-law advance of the phase front exhibiting a range of

exponents i.e., 0 ≤ n ≤ 1. Replacing the transient term with a time-fractional

derivative (memory) results in a sub-diffusive power-law front advance s = tn,35

0 ≤ n ≤ 1/2. In contrast, replacing the gradient term with a space-fractional

derivative (non-local), produces a super-diffusive advance s = tn, 1/2 ≤ n ≤ 1.

We stress the point that predictions from a Stefan model with a fractional time

derivative are restricted to sub-diffusive anomalous behavior while predictions

from models with a fractional gradient term are restricted to super-diffusive40

anomalous behavior.

Outside of using fractional calculus models, however, anomalous behaviors

for the phase front movement from a Stefan problem can also be obtained by

using a space and/or time dependent thermal conductivity in a conventional

(integer derivative) Fourier heat transport equation. For example, on using45

a power-law in space definition of the conductivity (e.g., a graded material),

Falcini and Voller [10] derive a closed analytical solution of a one-dimensional

Stefan problem in which the phase front movement recovers the full range of

power-law in time exponents, 0 ≤ n ≤ 1. In more recent work, Falcini et al. [4],

working with a generalized Fourier heat transport model that combines both50

Caputo space and time fractional derivatives with a power-law in space depen-

dent conductivity, explore the connections between memory, non-locality, and
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variable conductivity in setting the space-time scaling for diffusion controlled

problems. While this work provides a theoretical underpinning for the anoma-

lous behaviors associated with generalized Stefan models it also introduces some55

ambiguity related to matching a given model choice (memory, non-local, vari-

able conductivity) to a given observation of the phase front movement; e.g.,

as shown in [4], with the appropriate choice of time derivative order or power-

law spacial variation of conductivity, both memory and non-linear conductivity

models can predict a power-law in time phase front movement s = tn with an60

identical sub-diffusive exponent 0 ≤ n ≤ 1/2.

At this point, we should recognize that anomalous diffusion signals are not

restricted to the form of a power-law in time but more correctly include any

signals whose variance does not grow linearly in time. In this light, another

interesting class of anomalous diffusion processes to consider is ultraslow scaled65

Brownian processes, where the variance grows logarithmically in time (see for

example [14] and the references therein). Recovering such a behavior for the

phase front movement, however, is out of the reach of the current memory, non-

local and variable conductivity treatments that have been proposed for Stefan

models.70

The objective of this paper is to introduce a general, fractional based treat-

ments for modeling memory and non-locality in a Stefan problem. The key

step is to replace the standard Caputo fractional derivative of temperature with

respect to time t or space x, used in previous general Stefan model treatments,

with an integro-differential evolution operator that is essentially the Caputo75

fractional derivative of temperature with respect to a general function of time

f(t) or space f(x). With appropriate settings, using these treatments in the

Stefan problem, even in the absence of a space or time varying conductivity,

can not only predict phase front movements with arbitrary positive power-law

time exponents 0 ≤ n ≤ 1 but can also predict front movements that exhibit80

non-power-law anomalous behaviors. Further, in the context of the limit melt-

ing Stefan problem introduced in Voller [8], we are able to mitigate some of

the ambiguity in matching a suitable model treatment to given observations of
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front movement and temperature profile. In particular, we show, in this limit

problem, (i) that non-local treatments are essentially equivalent to treatments85

that use a spatially varying conductivity (representing a graded material), (ii)

that memory treatments are essentially equivalent to treatments that use a time

varying conductivity (representing an aging effect), and (iii) a clear delineation

of anomalous behaviors resulting from memory and non-local treatments.

2. A one-phase, one-dimensional Stefan model90

Without too much loss of generality we will carry our arguments in this work

by considering a one-phase, one-dimensional Stefan problem. This involves the

melting of a solid in a one-dimensional domain x ≥ 0. Initially the solid is at

the unique phase change temperature, T = 0 say, and melting is induced at

time t = 0, by raising and fixing the temperature at x = 0 to a fixed value, e.g.,95

T0 > 0. The governing equation representing the heat conduction in the liquid

domain is (see [1])

ρc
∂T

∂t
= − ∂q

∂x
, 0 ≤ x ≤ s(t) , (1)

where q is the flux term, ρ is density and c is the specific heat (assumed constant

in this work). The initial condition is T (x > 0, t = 0) = 0 and the boundary

conditions are T (0, t) = T0 at x = 0 and T (s(t), t) = 0. Since the problem100

is posed in an expanding domain, an extra condition is needed at the moving

interface s(t)

q(s(t)) = ρL
ds

dt
, (2)

stating that the advance of the front depends on the rate at which heat arriving

at the front can supply the latent heat L, required to melt the solid.

Simply proposing alternative phenomenological models for the flux term q105

will allow us to build from eqs. (1) and (2) alternative memory and non-local

models.
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3. Definitions and properties of operators

In order to provide a high degree of flexibility in the definitions of the flux q

in eqs. (1) and (2), in this work we will use a number of convolution operators110

related to the fractional calculus. In the first place, following the monograph by

Kilbas et al. [13] (Section 2.5) we consider the fractional 0 < ν ≤ 1 order integral

of a function g(z) with respect to another function f(z). Under the restrictions

that f(z) is a strictly monotonic increasing C1 function in the interval (0, z)

with f(0) = 0, we can write this integral as115

0I
ν,f
z g(z) :=

1

Γ(ν)

∫ z

0

(f(z)− f(ζ))ν−1f ′(ζ)g(ζ)dζ . (3)

We note that, when f(z) = z, we recover the Riemann–Liouville fraction

integral of order 0 < ν ≤ 1 and, on associating z with time t, when f(z) = zα/β

we recover the definition of Erdélyi–Kober fractional integral recently applied

in the studies on Generalized Grey Brownian Motion (see, e.g., [15, 16]). From

this definition, appealing to the recent work of Almeida in [17], we can write120

down a Caputo-type regularization for an order 0 < ν ≤ 1 fractional derivative

of a function g(z) with respect to f(z) as

0Ô
ν,f
z g(z) := 0Iz

1−ν,f
(

1

f ′(z)

dg(z)

dz

)
:=

1

Γ(1− ν)

∫ z

0

(f(z)− f(ζ))−ν
dg

dζ
dζ .

(4)

We note the following properties of this derivative (see Theorem 5 in [17]),

0Ô
ν,f
z 0Iz

ν,fg(z) = g(z) , (5)

and (see Lemma 1 in [17])

0Ô
ν,f
z f(z)β ∼ f(z)β−ν , β > 0 . (6)

4. Particular Stefan Models125

4.1. A conventional Stefan model

In the conventional treatment we assume that the flux can be represented

by Fourier’s first law

q = qF = −K∂T

∂x
, (7)
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giving rise to the following governing equation and front balance condition

ρc
∂T

∂t
=

∂

∂x

(
K
∂T

∂x

)
, 0 ≤ x ≤ s(t) , (8)

−K∂T

∂x

∣∣∣∣
x=s(t)

= ρL
ds

dt
, (9)

where, in a general setting, we can allow for both time and space variations in130

the conductivity K. The initial T (x > 0, t = 0) = 0 and boundary T (0, t) = T0,

T (s(t), t) = 0 conditions, remain as before.

4.2. A general Stefan model with memory

To introduce memory, we use the fractional order integral define in eq. (3)

to construct the following generalization of the Fourier law135

q = qFM (x, t) = − κ

Γ(ν)

∂

∂t

∫ t

0

(f(t)−f(τ))ν−1
∂T

∂x
f ′(τ) dτ = −κ ∂

∂t
0It

ν,f

(
∂T

∂x

)
,

(10)

where 0 < ν ≤ 1, and κ is a scaling constant. Note on setting f(t) = t we

recover the flux model introduced in the memory Stefan model proposed in [7].

By using eq. (10) in our base Stefan model eqs. (1) and (2), we arrive at

the following memory model

ρc
∂T

∂t
= κ

∂

∂x

(
∂

∂t
0It

ν,f

(
∂T

∂x

))
, 0 ≤ x ≤ s(t) , (11)

with140

−κ ∂
∂t

0It
ν,f

(
∂T

∂x

) ∣∣∣∣
x=s(t)

= ρL
ds

dt
. (12)

Due to its conserved nature, this will be our preferred form for a memory model.

Note, however, that by dividing by f ′(t) and applying the fractional integral

operator 0It
1−ν,f to both side of eqs. (11) and (12), we arrive, on using the

properties of the general-Caputo definition in eqs. (4) and (5), the alternative

form of memory Stefan problem145

ρc0Ô
ν,f
t T = κ

∂2T

∂x2
, 0 ≤ x ≤ s(t) , (13)
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−κ
(
∂T

∂x

) ∣∣∣∣
x=s(t)

= ρL0Ô
ν,f
t s(t) . (14)

On setting f(t) = t, we recover the fractional derivative memory forms, found

in the current literature (e.g., [4, 5, 6, 7, 8, 9]).

4.3. A general non-local Stefan model

A general non-local (GNL) model is constructed through using the general-

Caputo fractional derivative definition in eq. (4) to replace the gradient term150

in the Fourier law (eq. (7)), i.e.,

q = qGNL(x, t) = −κ0
(
0Ô

ν,f
x T

)
, (15)

leading to the non-local Stefan model

ρc
∂T

∂t
= κ0

∂

∂x

(
0Ô

ν,f
x T (x, t)

)
, 0 ≤ x ≤ s(t) , (16)

−κ0Ôν,fx T (s(t)) = ρL
ds

dt
. (17)

5. A limit case Stefan model

To arrive at analytical solutions that will expose the anomalous signals,

associated with the various flux choices in the general Stefan model introduced155

in the previous section, we consider the limit Stefan problem, previously studied

in [4, 8, 9]. This is obtained by setting the density ρ and latent heat L to unity

and letting the specific heat c → 0. In the context of the one-dimensional

Stefan problem studied here, the physical interpretation of the limit problem is

the moisture filling (infiltration) into an initially dry, horizontal, porous tube160

under the application of a fixed pressure head at x = 0.

8



5.1. The conventional limit Stefan model

Letting c→ 0 in the conventional Stefan problem, eqs. (8) and (9), leads to

the following limit problem

∂

∂x

(
K
∂T

∂x

)
= 0 , 0 ≤ x ≤ s(t) , (18)

−K∂T

∂x

∣∣∣∣
x=s(t)

=
ds

dt
. (19)

The initial and boundary conditions, used here and in all alternative versions of165

this problem are, T (x > 0, t = 0) = 0 and boundary T (0, t) = 1, T (s(t), t) = 0

(see Fig. 1).

In a general setting, the conductivity K could be a function of space or

time. For example we could imagine that the media is graded such that the

conductivity increases or decreases with space. Alternatively we might imagine170

a situation where the uniform ambient conditions are changing in such away

to induce temporal changes in the conductivity. We will examine particular

solutions for these two cases in detail below.

5.2. A limit Stefan model with memory

Letting c → 0 in the memory Stefan problem, eqs. (11) and (12), leads to175

the following limit problem

∂

∂x

(
qFM

)
=

∂

∂x

(
∂

∂t
0It

ν,f

(
∂T

∂x

))
= 0 , 0 ≤ x ≤ s(t) , (20)

with

qFM = −κ ∂
∂t

0It
ν,f

(
∂T

∂x

) ∣∣∣∣
x=s(t)

=
ds

dt
. (21)

From eq. (20) we can infer, for this problem, that the memory flux qFM ,

defined in eq. (10), can only be a function of time. This in turn implies that

the gradient derivative, ∂T/∂x, under the time fractional integration also has180

to be a function of time alone. Thus, the solution for the temperature profile

that satisfies the equation and boundary conditions is linear in space, i.e.,
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T = 1− x

s(t)
,

∂T

∂x
= − 1

s(t)
. (22)

To move forward we make the ansatz that, for any given monotonically

function f(t), with f(0) = 0, the front advance is given by s(t) = f
ν
2 . In this

way, f ′/s ∼ (f1−
ν
2 )′ and we can write the memory flux, define in eq. (10), as185

qFM (t) =
κ

Γ(ν)

d

dt

∫ t

0

(f(t)− f(τ))ν−1
d

dτ

(
f1−

ν
2

)
dτ ∼ d

dt
0Ôt

1−ν,f
f1−

ν
2 . (23)

Thus, by the general Caputo property in eq. (6), the memory flux in this limit

case Stefan problem can be written as

qFM ∼ d

dt
f

ν
2 . (24)

On substituting this in the front condition of eq. (21) we do indeed see that

s(t) = f
ν
2 .

The above result imparts a high degree of utility to the Stefan memory190

model. Effectively, whenever the observed temperature profile is linear, this

model can be used to fit any observed monotonic advance of the phase front with

time. For example a setting of f(t) = tm, with m > 0, will fit any observed front

movement with the general power-law form s = tn, n = (mν)/2 > 0. Further,

if f(t) ∼ ln(1 + t), our generalized Caputo derivative in eq. (4) has the form of195

the regularized Hadamard derivative [18] and we can match the observation of

an ultraslow motion of the melting front where s(t) ∼ lnν/2(1 + t).

Note, in the setting of this limit problem we can, using the second component

of eq. (22), rearrange the memory flux term in eq. (24):

qFM ∼ d

dt
f

ν
2 = f ′f

ν
2−1 =

f ′fν−1

s
= f ′(t)f(t)ν−1

∂T

∂x
. (25)

From (25) we see that, this limit case Stefan problem based on the memory200

flux qFM , defined in eq. (10), is equivalent to the flux in a conventional model

qF = −K∂T/∂x with a time dependent conductivity K(t) = f ′(t)f(t)ν−1.
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5.3. A limit non-local Stefan model

Letting c → 0 in the non-local Stefan problem, eqs. (16) and (17), leads to

the following limit problem205

∂

∂x

(
qGNL

)
=

∂

∂x

(
0Ô

ν,f
x T (x, t)

)
= 0 , 0 ≤ x ≤ s(t) , (26)

qGNL = −κ0Ôν,fx T (s(t)) =
ds

dt
. (27)

Now we see that the non-local flux qGNL can only be a function of time t. By

the property eq. (5) of the general Caputo derivative, eq. (4) , this requires, on

accounting for the boundary conditions, that

T (x, t) = 1− f(x)ν

f(s)ν
, 0Ô

ν,f
x T (x, t)) ∼ 1

f(s)ν
. (28)

In this way, if we restrict ourselves to power-law functions with the form f(x) =

xm, with m > 0, we can readily generate power-law in time predictions for the210

advance of the phase front as s = tn, 0 ≤ n = 1/(1 +mν) ≤ 1.

There are two point to make here. First, in contrast to the general-memory

approach, the ability of the general non-local approach, to match a given mono-

tonic advance of the phase front is restricted to power-laws in time, with expo-

nents in the range 0 < n ≤ 1. Secondly, again in contrast to the general-memory215

approach, the general non-local approach will always generate a curved temper-

ature profile, eq. (28). A linear profile is only recovered under normal-diffusion

conditions, ν = 1, f(x) = x.

Note further, in considering the limit case Stefan problem with f(x) = xm,

m > 0, if we set a non linear conductivity as K(x) = f (1−ν)/f ′ = x1−mν we see220

that our non-local flux is equivalent to a local flux with a non-linear conductivity,

i.e., within an appropriate constant, qGNL ≡ K(x)(∂T/∂x).

6. Discussion

In this work our focus has been to study the influence of the flux definition

on the prediction of the temperature profile T (x, t) and phase front movement225
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<latexit sha1_base64="Yyzur+X32RHIUv0VAqJjc6f/7gw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxYr+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYhVAycJ9yM6VCIUjKKVHhs3br9ccavuHGSVeDmpQI56v/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHpu1Xu4rNRu8ziKcAKncA4eXEEN7qEOTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QOfm41Z</latexit><latexit sha1_base64="Yyzur+X32RHIUv0VAqJjc6f/7gw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxYr+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYhVAycJ9yM6VCIUjKKVHhs3br9ccavuHGSVeDmpQI56v/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHpu1Xu4rNRu8ziKcAKncA4eXEEN7qEOTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QOfm41Z</latexit><latexit sha1_base64="Yyzur+X32RHIUv0VAqJjc6f/7gw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxYr+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYhVAycJ9yM6VCIUjKKVHhs3br9ccavuHGSVeDmpQI56v/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHpu1Xu4rNRu8ziKcAKncA4eXEEN7qEOTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QOfm41Z</latexit><latexit sha1_base64="Yyzur+X32RHIUv0VAqJjc6f/7gw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0ItQ9OKxYr+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYhVAycJ9yM6VCIUjKKVHhs3br9ccavuHGSVeDmpQI56v/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHpu1Xu4rNRu8ziKcAKncA4eXEEN7qEOTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QOfm41Z</latexit>

s(t)
<latexit sha1_base64="HK1vmsNGucAYIE4h0yTfQslnmW4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6Lrfztr6xubWdmmnvLu3f3BYOTpu2ygxjLdYJCPTDajlUmjeQoGSd2PDqQok7wSTu9zvPHFjRaQfcRpzX9GRFqFgFHPJ1vBiUKm6dXcOskq8glShQHNQ+eoPI5YorpFJam3Pc2P0U2pQMMln5X5ieUzZhI54L6OaKm79dH7rjJxnypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTzlLARv+eVV0r6se27de7iqNm6LOEpwCmdQAw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0rjnFzAn8gfP5A3omjdo=</latexit><latexit sha1_base64="HK1vmsNGucAYIE4h0yTfQslnmW4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6Lrfztr6xubWdmmnvLu3f3BYOTpu2ygxjLdYJCPTDajlUmjeQoGSd2PDqQok7wSTu9zvPHFjRaQfcRpzX9GRFqFgFHPJ1vBiUKm6dXcOskq8glShQHNQ+eoPI5YorpFJam3Pc2P0U2pQMMln5X5ieUzZhI54L6OaKm79dH7rjJxnypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTzlLARv+eVV0r6se27de7iqNm6LOEpwCmdQAw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0rjnFzAn8gfP5A3omjdo=</latexit><latexit sha1_base64="HK1vmsNGucAYIE4h0yTfQslnmW4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6Lrfztr6xubWdmmnvLu3f3BYOTpu2ygxjLdYJCPTDajlUmjeQoGSd2PDqQok7wSTu9zvPHFjRaQfcRpzX9GRFqFgFHPJ1vBiUKm6dXcOskq8glShQHNQ+eoPI5YorpFJam3Pc2P0U2pQMMln5X5ieUzZhI54L6OaKm79dH7rjJxnypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTzlLARv+eVV0r6se27de7iqNm6LOEpwCmdQAw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0rjnFzAn8gfP5A3omjdo=</latexit><latexit sha1_base64="HK1vmsNGucAYIE4h0yTfQslnmW4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6Lrfztr6xubWdmmnvLu3f3BYOTpu2ygxjLdYJCPTDajlUmjeQoGSd2PDqQok7wSTu9zvPHFjRaQfcRpzX9GRFqFgFHPJ1vBiUKm6dXcOskq8glShQHNQ+eoPI5YorpFJam3Pc2P0U2pQMMln5X5ieUzZhI54L6OaKm79dH7rjJxnypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTzlLARv+eVV0r6se27de7iqNm6LOEpwCmdQAw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0rjnFzAn8gfP5A3omjdo=</latexit>

q= qGNL, f(x) = xm, m > 0

K = x1−mν K = f′� f ν−1

q= qt, monotonic, f(0) = 0
oror

Figure 1: Model choices for limit case Stefan problem

s(t) from a one-dimensional one-phase Stefan melting problem. We select three

different flux definitions to investigate; (i) a conventional Fourier law (conduc-

tivity × temperature gradient) with a conductivity as function of time (aging)

or space (graded material), (ii) a flux that can account for system memory ex-

pressed in terms of an order 0 < ν ≤ 1 fractional derivative of the temperature230

with respect to a general function of time f(t), and (iii) a flux that can account

for non-locality, expressed in terms of an order 0 < ν ≤ 1 fractional derivative

of the temperature with respect to a general function of space f(x). All of these

flux definitions can produce anomalous diffusion signals in which the monotonic

advance of the melting front differs from the normally expected value of 1/2.235

As we have noted in our introduction, recent work on Stefan problems [4]

has suggested that, in matching a given anomalous observation, there is some

ambiguity in selecting an appropriate flux definition. For example, an observed

anomalous front advance can be independently matched by two of the three
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choices of flux model. Here, through investigating and solving a particular limit240

case Stefan problem (a model of moisture infiltration into a porous tube), we

have mitigated some of the ambiguity. In particular, we have shown that when

we base the model choice on two physical observations, the front movement

and the temperature profile, we are able to distinguish between the predictions

from a memory and a non-local model. In addition, in the context of our245

limit model, as summarized if Fig. 1, we have shown that the memory flux

is equivalent to a conventional flux with a time dependent conductivity and

that the non-local flux is equivalent to a conventional flux with a power-law

in space dependent conductivity. Hence, while this may not be the case for

more general Stefan problems, for the infiltration problem, it is reasonable to250

separate our phenomenological flux models into two classes, time treatments

(memory or non-linear in time conductivity) and space treatments (non-locality

or space dependent conductivity). We can select the appropriate treatment from

observations of the temperature profile; an observed linear profile indicating a

time treatment and an observed non-linear profile indicating a space treatment.255

Both time and space treatments are able to match power-law time exponents

(sub- 0 < n ≤ 1/2 and super- 1/2 < n ≤ 1) for front advances. Time treatments,

however, are more versatile, with the mathematical ability to match power-law

exponents beyond the ballistic range n > 1 and alternative time dependencies

for the front movement, e.g., ultra slow log laws.260
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