407 research outputs found

    Decoherence due to telegraph and 1/f noise in Josephson qubits

    Full text link
    We study decoherence due to random telegraph and 1/f noise in Josephson qubits. We illustrate differences between gaussian and non gaussian effects at different working points and for different protocols. Features of the intrinsically non-gaussian and non-Markovian low-frequency noise may explain the rich physics observed in the spectroscopy and the dynamics of charge based devices.Comment: 6 pages, 4 figures. Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics 2004 (MS+S2004), Atsugi, Japa

    Information transmission over an amplitude damping channel with an arbitrary degree of memory

    Full text link
    We study the performance of a partially correlated amplitude damping channel acting on two qubits. We derive lower bounds for the single-shot classical capacity by studying two kinds of quantum ensembles, one which allows to maximize the Holevo quantity for the memoryless channel and the other allowing the same task but for the full-memory channel. In these two cases, we also show the amount of entanglement which is involved in achieving the maximum of the Holevo quantity. For the single-shot quantum capacity we discuss both a lower and an upper bound, achieving a good estimate for high values of the channel transmissivity. We finally compute the entanglement-assisted classical channel capacity.Comment: 17 pages, 7 figure

    Classical and quantum capacities of a fully correlated amplitude damping channel

    Full text link
    We study information transmission over a fully correlated amplitude damping channel acting on two qubits. We derive the single-shot classical channel capacity and show that entanglement is needed to achieve the channel best performance. We discuss the degradability properties of the channel and evaluate the quantum capacity for any value of the noise parameter. We finally compute the entanglement-assisted classical channel capacity.Comment: 16 pages, 9 figure

    Andreev tunneling into a one-dimensional Josephson junction array

    Full text link
    In this letter we consider Andreev tunneling between a normal metal and a one dimensional Josephson junction array with finite-range Coulomb energy. The I−VI-V characteristics strongly deviate from the classical linear Andreev current. We show that the non linear conductance possesses interesting scaling behavior when the chain undergoes a T=0 superconductor-insulator transition of Kosterlitz-Thouless-Berezinskii type. When the chain has quasi-long range order, the low lying excitation are gapless and the I−VI-V curves are power-law (the linear relation is recovered when charging energy can be disregarded). When the chain is in the insulating phase the Andreev current is blocked at a threshold which is proportional to the inverse correlation length in the chain (much lower than the Coulomb gap) and which vanishes at the transition point.Comment: 8 pages LATEX, 3 figures available upon reques

    Contact resistance dependence of crossed Andreev reflection

    Full text link
    We show experimentally that in nanometer scaled superconductor/normal metal hybrid devices and in a small window of contact resistances, crossed Andreev reflection (CAR) can dominate the nonlocal transport for all energies below the superconducting gap. Besides CAR, elastic cotunneling (EC) and nonlocal charge imbalance (CI) can be identified as competing subgap transport mechanisms in temperature dependent four-terminal nonlocal measurements. We demonstrate a systematic change of the nonlocal resistance vs. bias characteristics with increasing contact resistances, which can be varied in the fabrication process. For samples with higher contact resistances, CAR is weakened relative to EC in the midgap regime, possibly due to dynamical Coulomb blockade. Gaining control of CAR is an important step towards the realization of a solid state entangler.Comment: 5 pages, 4 figures, submitted to PR

    Broadband noise decoherence in solid-state complex architectures

    Full text link
    Broadband noise represents a severe limitation towards the implementation of a solid-state quantum information processor. Considering common spectral forms, we propose a classification of noise sources based on the effects produced instead of on their microscopic origin. We illustrate a multi-stage approach to broadband noise which systematically includes only the relevant information on the environment, out of the huge parametrization needed for a microscopic description. We apply this technique to a solid-state two-qubit gate in a fixed coupling implementation scheme.Comment: Proceedings of Nobel Symposium 141: Qubits for Future Quantum Informatio

    Dynamical suppression of telegraph and 1/f noise due to quantum bistable fluctuator

    Full text link
    We study dynamical decoupling of a qubit from non gaussian quantum noise due to discrete sources, as bistable fluctuators and 1/f noise. We obtain analytic and numerical results for generic operating point. For very large pulse frequency, where dynamic decoupling compensates decoherence, we found universal behavior. At intermediate frequencies noise can be compensated or enhanced, depending on the nature of the fluctuators and on the operating point. Our technique can be applied to a larger class of non-gaussian environments.Comment: Revtex 4, 5 pages, 3 figures. Title revised and some other minor changed. Final version as published in PR

    Design of a Lambda system for population transfer in superconducting nanocircuits

    Get PDF
    The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only in the charge-phase regime. We find a number of results uniquely due to non-Markovianity of BBCN, namely: (a) the efficiency for STIRAP depends essentially on noise channels in the trapped subspace; (b) low-frequency fluctuations can be analyzed and represented as fictitious correlated fluctuations of the detunings of the external drives; (c) a simple figure of merit for design and operating prescriptions allowing the observation of STIRAP is proposed. The emerging physical picture also applies to other classes of coherent nanodevices subject to BBCN.Comment: 14 pages, 11 figure
    • …
    corecore