11 research outputs found

    Near infrared spectrometry for rapid non-invasive modelling of Aspergillus-contaminated maturing kernels of maize (Zea mays L.)

    Get PDF
    Open Access JournalAflatoxin-producing Aspergillus spp. produce carcinogenic metabolites that contaminate maize. Maize kernel absorbance patterns of near infrared (NIR) wavelengths (800–2600 nm) were used to non-invasively identify kernels of milk-, dough- and dent-stage maturities with four doses of Aspergillus sp. contamination. Near infrared spectrometry (NIRS) spectral data was pre-processed using first derivative Savitzky-Golay (1d-SG) transformation and multiplicative scatter correction on spectral data. Contaminated kernels had higher absorbance between 800–1134 nm, while uninoculated samples had higher absorbance above 1400 nm. Dose and maturity clusters seen in Principal Component Analysis (PCA) score plots were due to bond stretches of combination bands, CH and C=O functional groups within grain macromolecules. The regression model at 2198 nm separated uninoculated and inoculated kernels (p < 0.0001, R2 = 0.88, root mean square error = 0.15). Non-invasive identification of Aspergillus-contaminated maize kernels using NIR spectrometry was demonstrated in kernels of different maturities

    "Ground-truthing" efficacy of biological control for aflatoxin mitigation in farmers' fields in Nigeria: from field trials to commercial usage, a 10-year study

    Get PDF
    Open Access JournalIn sub-Saharan Africa (SSA), diverse fungi belonging to Aspergillus section Flavi frequently contaminate staple crops with aflatoxins. Aflatoxins negatively impact health, income, trade, food security, and development sectors. Aspergillus flavus is the most common causal agent of contamination. However, certain A. flavus genotypes do not produce aflatoxins (i.e., are atoxigenic). An aflatoxin biocontrol technology employing atoxigenic genotypes to limit crop contamination was developed in the United States. The technology was adapted and improved for use in maize and groundnut in SSA under the trademark Aflasafe. Nigeria was the first African nation for which an aflatoxin biocontrol product was developed. The current study includes tests to assess biocontrol performance across Nigeria over the past decade. The presented data on efficacy spans years in which a relatively small number of maize and groundnut fields (8–51 per year) were treated through use on circa 36,000 ha in commercially-produced maize in 2018. During the testing phase (2009–2012), fields treated during one year were not treated in the other years while during commercial usage (2013–2019), many fields were treated in multiple years. This is the first report of a large-scale, long-term efficacy study of any biocontrol product developed to date for a field crop. Most (>95%) of 213,406 tons of maize grains harvested from treated fields contained 90%) contained 80% less aflatoxin content than untreated crops. The frequency of the biocontrol active ingredient atoxigenic genotypes in grains from treated fields was significantly higher than in grains from control fields. A higher proportion of grains from treated fields met various aflatoxin standards compared to grains from untreated fields. Results indicate that efficacy of the biocontrol product in limiting aflatoxin contamination is stable regardless of environment and cropping system. In summary, the biocontrol technology allows farmers across Nigeria to produce safer crops for consumption and increases potential for access to premium markets that require aflatoxin-compliant crops

    Development and scale-up of bioprotectants to keep staple foods safe from aflatoxin contamination in Africa

    Get PDF
    Publication online: 22 Nov 202

    Performance of broilers fed with maize colonized by either toxigenic or atoxigenic strains of Aspergillus flavus with and without an aflatoxin-sequestering agent

    Get PDF
    Open Access Journal; Published online: 26 Sept 2019In warm agricultural areas across the globe, maize, groundnut, and other crops become frequently contaminated with aflatoxins produced primarily by the fungus Aspergillus flavus. Crop contamination with those highly toxic and carcinogenic compounds impacts both human and animal health, as well as the income of farmers and trade. In Nigeria, poultry productivity is hindered by high prevalence of aflatoxins in feeds. A practical solution to decrease crop aflatoxin content is to use aflatoxin biocontrol products based on non-toxin-producing strains of A. flavus. The biocontrol product Aflasafe® was registered in 2014 for use in maize and groundnut grown in Nigeria. Its use allows the production of aflatoxin-safe maize and groundnut. A portion of the maize treated with Aflasafe in Nigeria is being used to manufacture feeds used by the poultry industry, and productivity is improving. One of the conditions to register Aflasafe with the national regulator was to demonstrate both the safety of Aflasafe-treated maize to avian species and the impact of Aflasafe as a public good. Results presented here demonstrate that the use of maize colonized by an atoxigenic strain of Aflasafe resulted in superior (p < 0.05) broiler performance in all evaluated parameters in comparison to broilers fed with toxigenic maize. Use of an aflatoxin-sequestering agent (ASA) was not sufficient to counteract the harmful effects of aflatoxins. Both the safety and public good value of Aflasafe were demonstrated during our study. In Nigeria, the availability of aflatoxin-safe crops as a result of using Aflasafe allows poultry producers to improve their productivity, their income, and the health of consumers of poultry products

    Metabolites identified during varied doses of aspergillus species in Zea mays grains, and their correlation with aflatoxin levels

    Get PDF
    Open Access Journal; Published online: 7 May 2018Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = 0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity

    Aflatoxin contamination of maize, groundnut, and sorghum grown in Burkina Faso, Mali, and Niger and aflatoxin exposure assessment

    Get PDF
    Open Access Journal; Published online: 12 Oct 2022Aflatoxin contamination of staple crops by Aspergillus flavus and closely related fungi is common across the Sahel region of Africa. Aflatoxins in maize, groundnut, and sorghum collected at harvest or from farmers’ stores within two weeks of harvest from Burkina Faso, Mali, and Niger were quantified. Thereafter, aflatoxin exposure values were assessed using per capita consumption rates of those crops. Mean aflatoxin concentrations in maize were high, 128, 517, and 659 µg/kg in Mali, Burkina Faso, and Niger, respectively. The estimated probable daily intake (PDI) of aflatoxins from maize ranged from 6 to 69, 29 to 432, and 310 to 2100 ng/kg bw/day in Mali, Burkina Faso, and Niger, respectively. Similarly, mean aflatoxin concentrations in sorghum were high, 76 and 259 µg/kg in Mali and Niger, respectively, with an estimated PDI of 2–133 and 706–2221. For groundnut, mean aflatoxin concentrations were 115, 277, and 628 µg/kg in Mali, Burkina Faso, and Niger, respectively. Aflatoxin exposure values were high with an estimated 9, 28, and 126 liver cancer cases/100,000 persons/year in Mali, Burkina Faso, and Niger, respectively. Several samples were extremely unsafe, exceeding manyfold regulatory levels of diverse countries (up to 2000 times more). Urgent attention is needed across the Sahel for integrated aflatoxin management for public health protection, food and nutrition security, and access to trade opportunities

    Can it be all more simple? Manufacturing aflatoxin biocontrol products using dry spores of atoxigenic isolates of Aspergillus flavus as active ingredients

    Get PDF
    Open Access Journal; Published online: 23 Mar 2021Aflatoxin contamination of staple crops, commonly occurring in warm areas, negatively impacts human and animal health, and hampers trade and economic development. The fungus Aspergillus flavus is the major aflatoxin producer. However, not all A. flavus genotypes produce aflatoxins. Effective aflatoxin control is achieved using biocontrol products containing spores of atoxigenic A. flavus. In Africa, various biocontrol products under the tradename Aflasafe are available. Private and public sector licensees manufacture Aflasafe using spores freshly produced in laboratories adjacent to their factories. BAMTAARE, the licensee in Senegal, had difficulties to obtain laboratory equipment during its first year of production. To overcome this, a process was developed in Ibadan, Nigeria, for producing high-quality dry spores. Viability and stability of the dry spores were tested and conformed to set standards. In 2019, BAMTAARE manufactured Aflasafe SN01 using dry spores produced in Ibadan and sent via courier and 19 000 ha of groundnut and maize in Senegal and The Gambia were treated. Biocontrol manufactured with dry spores was as effective as biocontrol manufactured with freshly produced spores. Treated crops contained safe and significantly (P < 0.05) less aflatoxin than untreated crops. The dry spore innovation will make biocontrol manufacturing cost-efficient in several African countries

    Identification of early and extra-early maturing tropical maize inbred lines with multiple disease resistance for enhanced maize production and productivity in sub-Saharan Africa

    No full text
    Published online: 08 Apr 2022Maize, a staple for millions across sub-Saharan Africa (SSA), faces major biotic constraints affecting production and safety of the crop. These include the northern corn leaf blight (NCLB), southern corn leaf blight (SCLB), Curvularia leaf spot (CLS), and aflatoxin contamination by Exserohilum turcicum, Bipolaris maydis, Curvularia lunata, and Aspergillus flavus, respectively. Farmers in SSA would benefit tremendously if high yielding maize hybrids with multiple disease resistance (MDR) were developed and commercialized. Forty-nine early-maturing (90-95 days to physiological maturity, EM) and 55 extra-early-maturing (80-85 days to physiological maturity, EEM) IITA inbred lines were identified as resistant to NCLB in field evaluations in multiple agro-ecologies of Nigeria in 2017 and 2018. From each maturity group, 30 most resistant inbreds were selected for evaluation for resistance to SCLB and CLS using a detached leaf assay. Additionally, the inbreds were screened for resistance to kernel rot and aflatoxin contamination using a kernel screening assay. Seven EM and six EEM maize inbreds were found to be highly resistant to the three foliar pathogens while ten inbreds were resistant to the foliar pathogens and supported significantly (P = 0.01) less aflatoxin accumulation than other inbreds. Inbreds having MDR should be tested extensively in hybrid combinations and commercialized. Large-scale use of maize hybrids with MDR would i) increase maize production and productivity, and ii) reduce losses caused by aflatoxin contamination. Overall, planting of EM and EEM maize hybrids with MDR would contribute to food security, reduced aflatoxin exposure, and increased incomes of maize farmers in SSA
    corecore