661 research outputs found

    Superconducting alternator Patent

    Get PDF
    Superconducting alternator design with cryogenic fluid for cooling windings below critical temperatur

    The functional architecture of the nucleus as analysed by ultrastructural cytochemistry

    Get PDF
    Ultrastructural cytochemistry has been, for many years now, a major tool for investigating structure-function relationships in the cell nucleus. It has been essential in approaching the roles which different nuclear structural constituents can play in nuclear functions. This article briefly summarises transmission electron microscopic studies aimed at characterising in situ nuclear architectural domains and their involvement in main nuclear functions, such as DNA replication, hnRNA transcription and pre-mRNA processing. It discusses the importance of ultrastructural cytochemistry in high resolution analyses of intranuclear distribution of chromatin domains and their topological relationships with other structural interphase nuclear constituents. It puts forward the central role of the perichromatin region as a functional nuclear domain. Finally, it attempts to critically evaluate some future applications of ultrastructural investigations of the nucleus and stresses the importance of combining them with light microscopic analyses of living cell

    Functional structure of the cell nucleus

    Get PDF

    Cryoelectron microscopy of vitrified sections: a new challenge for the analysis of functional nuclear architecture

    Get PDF
    Cryoelectron microscopy of vitrified sections has become a powerful tool for investigating the fine structural features of cellular compartments. In the present study, this approach has been applied in order to explore the ultrastructural morphology of the interphase nucleus in different mammalian cultured cells. Rat hepatoma, Chinese hamster ovary and Potorus kidney cells were cryofixed by high-pressure freezing and the cryosections were examined at low temperature by transmission electron microscopy. Our results show that while the contrast of nuclear structural domains is remarkably homogeneous in hydrated sections, some of them can be recognised due to their characteristic texture. Thus, condensed chromatin appears finely granular and the perichromatin region contains rather abundant fibro-granular elements suggesting the presence of dispersed chromatin fibres and of perichromatin fibrils and granules. The interchromatin space looks homogeneous and interchromatin granules have not been identified under these preparative conditions. In the nucleolus, the most striking feature is the granular component, while the other parts of the nucleolar body, which appear less contrasted, are difficult to resolve. The nuclear envelope is easily recognisable with its regular perinuclear space and nuclear pore complexes. Our observations are discussed in the context of results obtained by other, more conventional electron microscopic method

    Vessel noise affects routine swimming and escape response of a coral reef fish

    Get PDF
    An increasing number of studies have shown that anthropogenic noise can negatively affect aspects of the anti-predator behaviour of reef fishes, potentially affecting fitness and survival. However, it has been suggested that effects could differ among noise sources. The present study compared two common sources of anthropogenic noise and investigated its effects on behavioural traits critical for fish survival. In a tank-based experiment we examined the effects of noise from 4-stroke motorboats and ships (bulk carriers > 50,000 tonnes) on the routine swimming and escape response of a coral reef fish, the whitetail damselfish (Pomacentrus chrysurus). Both 4-stroke boat and ship noise playbacks affected the fast-start response and routine swimming of whitetail damselfish, however the magnitude of the effects differed. Fish exposed to ship noise moved shorter distances and responded more slowly (higher response latency) to the startle stimulus compared to individuals under the 4-stroke noise treatment. Our study suggests that 4-stroke and ship noise can affect activity and escape response of individuals to a simulated predation threat, potentially compromising their anti-predator behaviour

    Habitat degradation and predators have independent trait-mediated effects on prey

    Get PDF
    Coral reefs are degrading globally leading to a catastrophic loss of biodiversity. While shifts in the species composition of communities have been well documented associated with habitat change, the mechanisms that underlie change are often poorly understood. Our study experimentally examines the effects of coral degradation on the trait-mediated effects of predators on the morphology, behaviour and performance of a juvenile coral reef fish. Juvenile damselfish were exposed to predators or controls (omnivore or nothing) in seawater that had flowed over either live or dead-degraded coral over a 45d period. No interaction between water source and predator exposure was found. However, fish exposed to degraded water had larger false eyespots relative to the size of their true eyes, and were more active, both of which may lead to a survival advantage. Non-consumptive effects of predators on prey occurred regardless of water source and included longer and deeper bodies, large false eyespots that may distract predator strikes away from the vulnerable head region, and shorter latencies in their response to a simulated predator strike. Research underscores that phenotypic plasticity may assist fishes in coping with habitat degradation and promote greater resilience to habitat change than may otherwise be predicted

    Impact of motorboats on fish embryos depends on engine type

    Get PDF
    This is the final version of the article. Available from Oxford University Press via the DOI in this record.Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite embryo health being critical to larval survival and recruitment. Here, we used a novel setup to monitor heart rates of embryos from the staghorn damselfish (Amblyglyphidodon curacao) in shallow reef conditions, allowing us to examine the effects ofin situboat noise in context with real-world exposure. We found that the heart rate of embryos increased in the presence of boat noise, which can be associated with the stress response. Additionally, we found 2-stroke outboard-powered boats had more than twice the effect on embryo heart rates than did 4-stroke powered boats, showing an increase in mean individual heart rate of 1.9% and 4.6%, respectively. To our knowledge this is the first evidence suggesting boat noise elicits a stress response in fish embryo and highlights the need to explore the ecological ramifications of boat noise stress during the embryo stage. Also, knowing the response of marine organisms caused by the sound emissions of particular engine types provides an important tool for reef managers to mitigate noise pollution.Research was funded by the ARC Center of Excellence for Coral Reef Studies (EI140100117), an International Postgraduate Research Scholarship awarded to S.J.S. from James Cook University and a UK Natural Environment Research Council grant to S.D.S. (NE/P001572/1)

    Living in mixed species groups promotes predator learning in degraded habitats

    Get PDF
    Living in mix-species aggregations provides animals with substantive anti-predator, foraging and locomotory advantages while simultaneously exposing them to costs, including increased competition and pathogen exposure. Given each species possess unique morphology, competitive ability, parasite vulnerability and predator defences, we can surmise that each species in mixed groups will experience a unique set of trade-offs. In addition to this unique balance, each species must also contend with anthropogenic changes, a relatively new, and rapidly increasing phenomenon, that adds further complexity to any system. This complex balance of biotic and abiotic factors is on full display in the exceptionally diverse, yet anthropogenically degraded, Great Barrier Reef of Australia. One such example within this intricate ecosystem is the inability of some damselfish to utilize their own chemical alarm cues within degraded habitats, leaving them exposed to increased predation risk. These cues, which are released when the skin is damaged, warn nearby individuals of increased predation risk and act as a crucial associative learning tool. Normally, a single exposure of alarm cues paired with an unknown predator odour facilitates learning of that new odour as dangerous. Here, we show that Ambon damselfish, Pomacentrus amboinensis, a species with impaired alarm responses in degraded habitats, failed to learn a novel predator odour as risky when associated with chemical alarm cues. However, in the same degraded habitats, the same species learned to recognize a novel predator as risky when the predator odour was paired with alarm cues of the closely related, and co-occurring, whitetail damselfish, Pomacentrus chrysurus. The importance of this learning opportunity was underscored in a survival experiment which demonstrated that fish in degraded habitats trained with heterospecific alarm cues, had higher survival than those we tried to train with conspecific alarm cues. From these data, we conclude that redundancy in learning mechanisms among prey guild members may lead to increased stability in rapidly changing environments

    Cryoelectron microscopy of vitrified sections: a new challenge for the analysis of functional nuclear architecture.

    Get PDF
    Cryoelectron microscopy of vitrified sections has become a powerful tool for investigating the fine structural features of cellular compartments. In the present study, this approach has been applied in order to explore the ultrastructural morphology of the interphase nucleus in different mammalian cultured cells. Rat hepatoma, Chinese hamster ovary and Potorus kidney cells were cryofixed by high-pressure freezing and the cryosections were examined at low temperature by transmission electron microscopy. Our results show that while the contrast of nuclear structural domains is remarkably homogeneous in hydrated sections, some of them can be recognised due to their characteristic texture. Thus, condensed chromatin appears finely granular and the perichromatin region contains rather abundant fibro-granular elements suggesting the presence of dispersed chromatin fibres and of perichromatin fibrils and granules. The interchromatin space looks homogeneous and interchromatin granules have not been identified under these preparative conditions. In the nucleolus, the most striking feature is the granular component, while the other parts of the nucleolar body, which appear less contrasted, are difficult to resolve. The nuclear envelope is easily recognisable with its regular perinuclear space and nuclear pore complexes. Our observations are discussed in the context of results obtained by other, more conventional electron microscopic methods
    corecore