6 research outputs found

    Buckling of very short elastic cylinders with weld imperfections under uniform bending

    Get PDF
    The length-dependent behaviour domains of thin elastic cylindrical shells under uniform bending have recently received significant research attention. Ovalization is known to affect very long cylinders that undergo significant cross-sectional flattening before failing by local buckling. This effect is restrained by the end boundary conditions in shorter cylinders, which instead fail by local buckling at moments close to the classical analytical prediction. In very short cylinders, however, even this local buckling is restrained by the end boundary, and failure occurs instead through the development of a destabilizing meridional fold on the compressed side. Although this is a limit point instability under bending, ovalization does not play any role at all. This ‘very short’ length domain has only recently been explored for the first time with the aid of finite element modelling. A brief overview of the non-linear buckling behaviour of very short elastic cylinders under uniform bending is presented in this paper. Two types of edge rotational restraint are used to illustrate the influence of a varying support condition on the stability in this short length range. It is shown that short cylinders under bending do not suffer at all from local short-wave buckling. Additionally, when the meridional dimension of such cylinders becomes particularly short, the resulting numerical models may predict indefinite stiffening without a limit point, even when the shell is modelled using more complete 3D solid continuum finite elements. Idealized weld depressions, which are realistic representations of a systemic manufacturing defect, are used to demonstrate only a very mild sensitivity to geometric imperfections at such short lengths owing to a pre-buckling stress state dominated by local compatibility bending. The topic should be of interest to researchers studying shell problems dominated by local bending with computational tools and designers of multi-segment shells with very close segment spacing

    Cylindrical shells under uniform bending in the framework of Reference Resistance Design

    Get PDF
    The resistance of cylindrical shells and tubes under uniform bending has received significant research attention in recent times, with a number of major projects aiming to characterise their strength through both experimental and numerical studies. However, the investigated cross-section slenderness ranges have mostly addressed low radius to thickness ratios where buckling occurs after significant plasticity and the influence of geometric imperfections is relatively minor. The behaviour under uniform bending of thinner imperfection-sensitive cylinders that fail by elastic buckling was largely omitted, as was the influence of finite length effects. The value of such resistance models that are only useful for thicker cylinders is therefore somewhat limited. This paper offers the most comprehensive known characterisation of the buckling and collapse resistance of isotropic cylindrical shells and tubes under uniform bending. Expressed within the modern framework of Reference Resistance Design (RRD), it holistically incorporates the effects of material plasticity, geometric nonlinearity and sensitivity to realistic and damaging weld depression imperfections. The characterisation was made possible by the authors' recently-developed novel methodology for mass automation of nonlinear shell buckling finite element analyses. A modification of the RRD formulation is proposed which facilitates its application to systems of low slenderness, and offers a compact algebraic characterisation of all potential imperfection amplitudes for this common shell structural condition. A reliability analysis is also performed

    Imperfection sensitivity in cylindrical shells under uniform bending

    No full text
    Efforts are ongoing to characterise a comprehensive resistance function for cylindrical shells under uniform bending, a ubiquitous structural system that finds application in load-bearing circular hollow sections, tubes, piles, pipelines, wind turbine support towers, chimneys and silos. A recent computational study by Rotter et al. demonstrated that nonlinear buckling of perfect elastic cylinders under bending is governed by four length-dependent domains –‘short’, ‘medium’, ‘transitional’ and ‘long’– depending on the relative influence of end boundary conditions and cross-sectional ovalisation. The study additionally transformed its resistance predictions into compact algebraic relationships for use as design equations within the recently developed framework of reference resistance design. This article extends on the above to present a detailed computational investigation into the imperfection sensitivity of thin elastic cylindrical shells across the most important length domains, using automation to carry out the vast number of necessary finite element analyses. Geometric imperfections in three forms – the classical linear buckling eigenmode, an imposed cross-sectional ovalisation and a realistic manufacturing ‘weld depression’ defect – are applied to demonstrate that imperfection sensitivity is strongly length dependent but significantly less severe than for the closely related load case of cylinders under uniform axial compression. The axisymmetric weld depression almost always controls as the most deleterious imperfection. The data are processed computationally to offer an accurate yet conservative lower-bound algebraic design characterisation of imperfection sensitivity for use within the RRD framework. The outcomes are relevant to researchers and designers of large metal shells under bending and will appeal to computational enthusiasts who are encouraged to adopt the automation methodology described herein to explore other structural systems

    A computational strategy to establish algebraic parameters for the Reference Resistance Design of metal shell structures

    No full text
    The new Reference Resistance Design (RRD) method, recently developed by Rotter [1], for the manual dimensioning of metal shell structures effectively permits an analyst working with only a calculator or spreadsheet to take full advantage of the realism and accuracy of an advanced nonlinear finite element (FE) calculation. The method achieves this by reformulating the outcomes of a vast programme of parametric FE calculations in terms of six algebraic parameters and two resistances, each representing a physical aspect of the shell's behaviour. The formidable challenge now is to establish these parameters and resistances for the most important shell geometries and load cases. The systems that have received by far the most research attention for RRD are that of a cylindrical shell under uniform axial compression and uniform bending. Their partial algebraic characterisations required thousands of finite element calculations to be performed across a four-dimensional parameter hyperspace (i.e. length, radius to thickness ratio, imperfection amplitude, linear strain hardening modulus). Handling so many nonlinear finite element models is time-consuming and the quantities of data generated can be overwhelming. This paper illustrates a computational strategy to deal with both issues that may help researchers establish sets of RRD parameters for other important shell systems with greater confidence and accuracy. The methodology involves full automation of model generation, submission, termination and processing with object-oriented scripting, illustrated using code and pseudocode fragments

    Nonlinear behaviour of short elastic cylindrical shells under global bending

    No full text
    A recent computational study identified four distinct domains of stability behaviour at different lengths in thin elastic cylindrical shells under global bending. Cylinders of sufficient length suffer from fully-developed cross-sectional ovalisation and fail by local buckling at a moment very close to the Brazier prediction. Progressively shorter cylinders experience less ovalisation owing to the increasingly strong restraint provided by the boundary at the edges. Very short thin cylinders, however, restrain the formation of even a local buckle and fail through a limit point instability at moments and curvatures significantly in excess of the classical elastic prediction. This limit point behaviour is not caused by ovalisation but by the growth of a destabilising fold on the compressed meridian. The nonlinear behaviour of very short cylinders under global bending is investigated in detail herein, covering a wide range of lengths, radius to thickness ratios and boundary conditions with both restrained and unrestrained meridional rotations corresponding to ‘clamped’ and ‘simply-supported’ conditions respectively. Two types of imperfections are investigated, the critical buckling eigenmode and a realistic manufacturing-related ‘weld depression’. A complex insensitivity to these imperfections is revealed owing to a pre-buckling stress state dominated by local compatibility bending, and the cylinder length is confirmed as playing a crucial role in governing this behaviour. The study contributes to the characterisation of multi-segment shells with very short individual cylindrical segments, often found in the aerospace and marine industries as well as in specialised civil engineering applications such as LIPP® silos
    corecore