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Abstract 

The resistance of cylindrical shells and tubes under uniform bending has received 

significant research attention in recent times, with a number of major projects aiming to 

characterise their strength through both experimental and numerical studies. However, the 

investigated cross-section slenderness ranges have mostly addressed low radius to 

thickness ratios where buckling occurs after significant plasticity and the influence of 

geometric imperfections is relatively minor. The behaviour under uniform bending of 

thinner imperfection-sensitive cylinders that fail by elastic buckling was largely omitted, as 

was the influence of finite length effects. The value of such resistance models that are only 

useful for thicker cylinders is therefore somewhat limited. 

This paper offers the most comprehensive known characterisation of the buckling and 

collapse resistance of isotropic cylindrical shells and tubes under uniform bending. 

Expressed within the modern framework of Reference Resistance Design (RRD), it 

holistically incorporates the effects of material plasticity, geometric nonlinearity and 

sensitivity to realistic and damaging weld depression imperfections. The characterisation 

was made possible by the authors’ recently-developed novel methodology for mass 

automation of nonlinear shell buckling finite element analyses. A modification of the RRD 

formulation is proposed which facilitates its application to systems of low slenderness, and 

offers a compact algebraic characterisation of all potential imperfection amplitudes for this 

common shell structural condition. A reliability analysis is also performed. 
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1.  Introduction 

Uniform bending is one of the most common reference loading arrangements for 

cylindrical metal shells, manifest in chimneys, wind turbine towers, piles, pipelines, 

structural members (circular hollow sections – CHS), aerospace vehicle fuselages, silos 

and tanks. These applications and others involve a wide range of radius to thickness (r/t) 

ratios, characteristic lengths and manufacturing or fabrication processes. The thickest 

cylinders fail by plastic collapse whilst the thinnest fail by elastic buckling, with those in-

between involving varying degrees of plasticity at failure. In addition, long cylinders under 

bending have long been known to exhibit ovalisation of the cross-section [1], a 

geometrically nonlinear phenomenon that greatly degrades the elastic load-bearing 

resistance. Construction or manufacturing defects may further degrade the moment 

capacity, so that a truly comprehensive design resistance description must be able to 

represent failure mechanisms at all lengths and cross-section slendernesses by combining 

the effects of geometric nonlinearity, plasticity and imperfection sensitivity, with each one 

having different impacts on different geometries. 

The testing of ‘thick’ cylinders (tubes) under bending has a long history, with many 

research programmes exploring their bending capacities e.g. [2-8]. However, the resulting 

data sets were typically used to calibrate resistance functions constructed at the level of 

abstraction of classical beam theory, an understandable choice for investigations that aimed 

to establish cross-section slenderness limits in relation to failure through full plasticity or 

first yield. However, more slender cylinders must be treated as shells: their strength is 

governed by local buckling, ovalisation and imperfection sensitivity, effects that are 

difficult to reconcile with a beam theory treatment without conservative and empirical 

adjustments that are based on a relatively weak test database. The review report of Rotter 

and Sadowski [9] explored the hand calculation predictions of a selection of international 

standards for the bending resistance of tubes and cylinders of intermediate slenderness and 

showed that the literature includes a great range of such empirical predictions that give 

quite different results.  This indicates that no reconciliation currently exists between 

‘beam’ and ‘shell’ treatments. This paper aims to establish such a reconciliation, based on 

the framework of Reference Resistance Design [10-12] for the manual dimensioning of 

metal shell systems. 
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2.  Reference Resistance Design (RRD) 

The Reference Resistance Design (RRD) framework was recently devised by Rotter [10-

12]. It permits any structural system to be algebraically characterised in a consistent and 

conservative manner, relating the characterisation directly to the mechanical phenomena. 

This allows a designer to have rapid access to the outcome of fully nonlinear resistance 

assessments of a structural system without recourse to onerous computational analyses. For 

cylinders under uniform bending, Rk(λ) ≡ Mk(λ) is the characteristic value of the nonlinear 

buckling moment (based on the characteristic values of material properties), while the two 

reference resistances Rpl ≡ Mpl and Rcr ≡ Mcr are the full plastic and linear elastic critical 

buckling moments respectively. Ignoring length effects, these resistances may be obtained 

from small displacement theory as: 
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where σy, E and ν are the yield stress, elastic modulus and Poisson ratio respectively, while 

r and t are the cylinder middle surface radius and thickness respectively. 

RRD is built on a base relationship between a system’s characteristic failure resistance χ 

and its dimensionless slenderness λ, which can be illustrated by both the ‘traditional’ and 

Rotter’s [13,14] ‘modified’ forms in Fig. 1. The most complete current functional form 

characterising this ‘capacity curve’ is as follows [15-17]: 
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In the above, the product α = αG×αI gives the ‘elastic reduction factor’ which accounts for 

the combined effects of geometric nonlinearity and imperfection sensitivity respectively. 

By definition, αI = 1 for perfect shells. The term ‘reduction’ is slightly misleading and is 

used for the common understanding in shells, but both effects may be beneficial as well as 

detrimental depending on the system [18]. The ‘plastic range factor’ β identifies the onset 



 4

of the resistance range over which inelastic behaviour significantly affects the strength, 

namely for all slendernesses below λp. For circular hollow sections (CHS) the slenderness 

λp corresponds to the boundary between Class 3 ‘noncompact’ and Class 4 ‘slender’ 

sections. The ‘squash limit’ slenderness λ0 identifies the value at which the full plastic 

moment Mpl is just achieved (boundary between Class 2 ‘compact’ to Class 3 

‘noncompact’). The functional form of the traditional capacity curve (Fig. 1a) is designed 

to be concave upwards or convex in the elastic region (λ ≥ λp), linear in the plastic region 

(between (λ,χ) = (0,χh) and (λ0,1), where χh is the projected y axis intercept) but may adopt 

a wide variety of curved shapes in the elastic-plastic region (λ0 < λ < λp) through an 

‘interaction exponent’ η which is currently permitted to vary linearly between boundary 

values of η0 and ηp at λ0 and λp respectively [16].  
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Fig. 1 – a) Traditional dimensionless and b) Modified capacity curves [14]. 

 

RRD offers a powerful framework to explore the nonlinear mechanics of structural systems 

and to translate the outcomes into a compact algebraic form for direct use in manual 

dimensioning. Because the characterisation is based on mechanical phenomena, sufficient 

information is contained within the seven independent dimensionless parameters αG, αI, β, 

η0, ηp, λ0 and χh, together with the two reference resistances Rpl and Rcr, necessary to 

reproduce a system’s behaviour at any slenderness. RRD has now been adopted into the 

European Standard on Metal Shells EN 1993-1-6 [17,19] through an amendment which 

additionally created a new normative Annex E to hold sets of RRD parameters for well-
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defined structural configurations and loading. However, the challenge remains to establish 

a database of these parameters for the most important systems [10], a considerable task for 

each defined structural problem, since it may require many thousands of individual 

simulations due to the potentially wide range of geometric, material and loading 

parameters that govern shell behaviour. A recent paper by Sadowski et al. [20] presented a 

computational strategy designed to make the programming of vast RRD-oriented 

parametric analyses manageable for researchers with access to only modest computational 

resources. This paper offers the first practical application of this methodology, aiming to 

establish the most comprehensive characterisation to date of elastic linear-hardening metal 

cylinders under uniform bending. 

 

3.  Length effects under uniform bending 

The geometric nonlinearity of perfect elastic cylindrical shells under uniform bending was 

explored in the computational study of Rotter et al. [21] who established that the resistance 

may be described in terms of four domains of behaviour, discriminated by the cylinder 

length L, which must be defined in a dimensionless manner as either ω or Ω: 

L

rt
ω =  and 

L t

r r
Ω =         (3a,b) 

Illustrated in Fig. 2, these length domains are: 

•  ‘Short’, where local buckling and ovalisation are fully restrained by the boundary 

condition and limit point buckling occurs at Mk >> Mcr (such that αG >> 1). 

•  ‘Medium’, where local short-wave bifurcation buckling occurs adjacent to the 

most compressed meridian at Mk ≈ 0.9Mcr (αG ≈ 0.9). The ~10% reduction from 

Mcr is caused by pre-buckling amplification of the edge boundary condition, as is 

also seen under axial compression [22]. The resistance in this domain may be 

characterised as relatively independent of r/t, because ovalisation is restrained by 

the edge boundary conditions when the dimensionless length ω is less than 0.5(r/t), 

or Ω is less than 0.5.  

•  ‘Transitional’, where increasing length permits progressively more ovalisation and 

causes an increasingly nonlinear pre-buckling equilibrium path, leading to a loss of 

stiffness and premature local buckling on the flattened compressed meridian at Mk 
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<< 0.9Mcr (αG << 0.9). A different dimensionless group Ω (Eq. 3b) is used to 

characterise this domain, which initiates at Ω = 0.5 or ω = 0.5(r/t). 

•  ‘Long’, where ovalisation has developed fully and cylinders of all lengths Ω ≥ 7 

bifurcate elastically at an asymptotic moment Mk ≈ 0.5Mcr (αG ≈ 0.5). 

 

 

Fig. 2 – Definition of the four length domains governing geometric nonlinearity in perfect 

elastic cylinders under uniform bending [23]. 

 

The dimensionless lengths Ω = 0.5 and 7 that define the boundaries between the ‘medium’ 

and ‘transitional’ and between the ‘transitional’ and ‘long’ domains respectively are 

retained here, where the effects of the other system nonlinearities, namely plasticity and 

imperfection sensitivity, are explored. The ‘short’ domain and its boundary with the 

‘medium’ domain were the subject of recent detailed studies by Fajuyitan et al. [23-25] 

who showed that local bifurcation is fully restrained when the cylinder length is of the 

order of the length of the ‘boundary layer’ of local compatibility bending. In place of 

bifurcation, these very short cylinders exhibit a softening load-displacement path leading to 
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limit point buckling at a high moment through a hitherto-undocumented ‘meridional 

folding’ mechanism, which is insensitive to initial geometric imperfections and may indeed 

benefit from them. Fajuyitan et al. [23] also studied the differences between pinned and 

clamped edge rotational restraint conditions on the length of the ‘short’ domain, finding 

that the ‘medium’ domain begins at shorter lengths for pinned edges (unrestrained 

rotations) than for clamped edges (restrained rotations).  

As the ‘short’ domain represents exceptionally short shells that are of limited practical 

application, it is not considered further here. Instead, for the purposes of a more compact 

and conservative characterisation, the ‘medium’ domain is treated as if it covered the entire 

length range of non-ovalising cylinders. This simplification also removes the need to 

include the edge rotational restraint in the characterisation, permitting the two reference 

resistances to be expressed only in terms of length-independent classical formulae (Eqs 1a 

and b). Further, as the ‘long’ domain has been shown to represent ‘asymptotic’ behaviour 

that is largely invariant with increasing length [21], it is sufficient to characterise it with a 

single ‘asymptotic’ set of RRD parameters obtained at the upper extreme of the 

‘transitional’ domain (Ω = 7). Lastly, the ‘modified’ capacity curve (Fig. 1b) in Rk / Rpl vs 

Rk / Rcr space exhibits a vertical elastic portion only if the reduction factors due to 

geometric nonlinearity (αG) and imperfection sensitivity (αI) are invariant with slenderness 

[10,13]. Establishing capacity curves at ‘constant geometric nonlinearity’ by grouping 

results at chosen values of an appropriately-constructed dimensionless geometric group is 

vital, as it reduces the dependencies of the RRD parameters on the geometric variables 

governing the system [20]. 

 

4.  Parameter ranges and modelling methodology 

4.1  General treatment 

A recent open-access paper by Sadowski et al. [20] presented a detailed strategy 

illustrating the design and management of a programme of computational analyses aimed 

at establishing a RRD characterisation of any metal shell system. A central feature is the 

establishment of an analysis hierarchy as shown in Fig. 3 which arranges the system 

variables into ‘Levels’ and establishes their influence on the RRD parameters αG, αI, β, η0, 

ηp, λ0 and χh. Whist the description given here is expressed in terms of a bi-linear elastic-
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hardening strength relationship, the procedure is not restricted to this material treatment. 

The Level 0 or ‘base state’ system variables are the elastic modulus E and yield stress σy, 

set here to 200 GPa and 460 MPa respectively for the entire characterisation. These are 

‘reasonable’ values adopted solely for the purposes of computation, and since the reference 

resistances Mpl and Mcr are linear in these two parameters (Eqs 1a and b), the 

dimensionless RRD formulation is scalable to other elastic stiffnesses and materials. The 

Level 1 system variable is taken here as the ratio of the post-yield linear strain hardening 

modulus Eh to the elastic modulus E, or Eh / E, assuming a simple bilinear material law. 

This ratio is set to 0.1% as a conservative lower bound on strain hardening that supports 

reasonable practical values of the squash limit λ0 [26] and the exponent η0. The Level 2 

variable is taken as the normalised amplitude δ/t of the system imperfection and affects all 

RRD parameters except αG. The system imperfection is the ‘Type A’ weld depression of 

Rotter and Teng [27], of which more details are given shortly. The Level 3 and 4 variables 

are the r/t and L/r ratios respectively, which may be combined into a dimensionless Level 

3/4 ‘length’ variable ω or Ω (Eq. 3) which, potentially, all RRD parameters are dependent 

on. A unit wall thickness of t = 1 was adopted throughout, making all calculations 

dimensionless. 

 

Table 1 – Computational analyses used and their acronyms [19]. 

Acronym LBA MNA MNIA† GNA GNIA GMNIA 

Geometric 

nonlinearity 
No No No Yes Yes Yes 

Material 

nonlinearity 
No Yes Yes No No Yes 

Imperfections No No Yes No Yes Yes 

† not strictly an analysis defined in EN 1993-1-6 [19], this is the geometrically linear and 

materially nonlinear analysis of the imperfect system – see Section 5 for details. 

 

In general, the two reference resistances Mpl and Mcr are established using parametric 

LBAs and MNAs (see Table 1) performed at Level 3 (i.e. by varying Level 3 variables, 

with lower-level variables either kept constant or ‘deactivated’). However, this is not 

necessary for cylinders under bending, as accurate classical closed-form expressions 
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already exist for these resistances (Eq. 1; Fig. 2) if the ‘short’ length domain is excluded. 

For Level 1 GMNIAs, the r/t and L/r variable ranges were designed to obtain capacity 

curves at 14 fixed values of ω between 5 (start of ‘medium’ domain for all r/t) and 350 

(end of ‘medium’ domain for r/t = 700, the thinnest modelled shell), and 20 fixed values of 

Ω between 0.5 (start of ‘transitional’ domain) and 10 (beyond the end of ‘transitional’ 

domain and well into the ‘long’ domain of asymptotic behaviour). A reduced set of Level 2 

GNIAs was also performed to establish accurate estimates of the slenderness at which 

plasticity first substantially affects the resistance, expressed through the β parameter. An 

additional set of Level 2-3 MNIAs was performed to establish the reference plastic 

collapse resistance Mpl,imp of imperfect cylinders. Each analysis was generated, submitted, 

terminated and processed without repetitive human intervention using the automated 

methodology of Sadowski et al. [20] at around 700 unsupervised analyses per day on two 

computer workstations. The parameter ranges are shown in Table 2. 

 

Table 2 – Parameter ranges and numbers of individual computational analyses. 

Set Level 1 (Eh) Level 2 (δ/t) Level 3 (r/t) Level 4 (L/r) 
Total no. of 

analyses 

GMNIA 0.1% of E (1) 0.01 – 3 (10) 10 – 700 (58) 
ω = 5 – 350; Ω 

= 0.5 – 10 (31) 

1×10×58×31  

= 17,980 

GNIA n / a 0.01 – 3 (10) 100 – 500 (32) 
ω = 5 – 350; Ω 

= 0.5 – 10 (31) 

10×32×31      

= 9,920 

MNIA n / a 0.01 – 3 (10) 10 – 700 (35) n / a 10×35 = 350 

Total no. 28,250 

 

4.2  Imperfection form 

The axisymmetric ‘Type A’ circumferential weld depression of Rotter and Teng [27] was 

used as the imperfection form throughout this study, with a single instance placed at 

midspan. Defined by a single meridional profile (Eq. 4), it is an analytical idealisation of 

the inward curling of the shell wall caused by both the anticlastic bending of the edges of 

rolled shell plates and the shrinking of a cooling weld. It has been shown by calibration on 

surface imperfection surveys to be a realistic representation of this systematic 

manufacturing defect [28-33], and has been extensively used over the past 30 years in 
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numerical studies of imperfection sensitivity in cylindrical shells, especially where 

meridional compressive stresses initiate buckling under various load conditions (in 

December 2019, the Scopus system showed 142 citations of Rotter and Teng [27]). The 

companion study by Fajuyitan and Sadowski [34] had additionally shown that the weld 

depression is consistently more deleterious for cylinders under bending than the classical 

linear buckling eigenmode or ovalisation harmonic imperfections.  

 

 

Fig. 3 – Specialised RRD analysis hierarchy for isotropic metal cylinders under uniform 

bending (after Sadowski et al. [20]). 
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For each combination of the r/t and L/r variables, the imperfection amplitude δ/t was 

varied from 0.01 or 0.001 (here termed ‘near perfect’) to 3 (deemed very imperfect). A 

weld depression located at midspan (meridional coordinate of z = L/2) is defined by: 

( ) 2 cos sin
2 2

L
z L L

w z e z z

π
π π

δ
− −

Λ
    

= − + −    
Λ Λ    

       (4) 

where Λ ≈ 2.444√(rt) is the linear meridional bending half-wavelength.   

 

4.3 Finite element model 

The template for each finite element model is shown in Fig. 4 and follows the same design 

as in the authors’ previous studies [21,23-25,35,36]. Using the ABAQUS [37] software, a 

quarter of the shell was modelled for computational efficiency with appropriate use of two 

sets of symmetry boundary conditions. The meridional mesh resolution was carefully 

refined throughout the zones within 3Λ of the loaded end boundary and within 3Λ of the 

midspan weld depression imperfection to capture local bending effects. Where these two 

regions overlapped for shorter medium-length cylinders (but still ω > 5), a uniform element 

spacing was applied meridionally. The circumferential element size was graded to produce 

a fine mesh of approximately square elements on the compression side but a courser mesh 

on the tension side. The general-purpose reduced-integration four-node S4R shell element 

was used throughout. 

These ABAQUS models were previously validated by Sadowski and Rotter [35] for tubes 

as thick as r/t = 10 under combined high strains and cross-sectional ovalisation. Both the 

experimental and numerical moment-curvature and ovalisation-curvature relationships of 

Kyriakides and Ju [38,39] were accurately reproduced. Similar ABAQUS models were 

successfully used by Vasilikis et al. [40] to model experiments described by van Es et al. 

[8] on the elastic-plastic buckling of thick (r/t varying from 32 to 64) spiral-welded steel 

tubes under bending. The power of the Riks [41] arc-length solver in ABAQUS to model 

elastic bifurcation and mode-switching in thin cylindrical shells (r/t ≈ 400) was illustrated 

by Kobayashi et al. [42], who reproduced load-displacement paths of laboratory-tested 

cylinders under uniform compression [22,43] with a high degree of fidelity. Finally, Rotter 

et al. [21] had shown that ABAQUS predicts an elastic ovalisation response in cylinders of 
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finite length under bending consistent with predictions by algebraic and numerical studies 

that did not use the finite element method, and tends to the limiting Brazier [1] reference 

values for asymptotically long cylinders at all r/t. Each of the above studies used the S4R 

element. 

 

 

Fig. 4 – Template for each finite element model.  

 

5.  Reference full plastic moment resistance for cylinders with 

midspan weld depression imperfections 

5.1 Introduction 

The two linear reference moments Mpl and Mcr are the normalising parameters of the RRD 

characterisation and must be established as accurately as possible. However, the current 

RRD functional form (Eq. 2) becomes ill-suited to express capacity curves of very 

imperfect cylinders at low cross-section slenderness if it is always related to the full plastic 

moment of the perfect cylinder Mpl. Deeper imperfections depress the capacity curve to the 

extent that a characterisation in terms of Mpl leads to non-physical negative values of the 

squash limit slenderness λ0 (illustrated schematically in Fig. 5a). This arises because the 

systematic treatment in terms of fixed imperfection amplitudes, to give total generalisation, 

leads to the requirement to include deep imperfections in stocky structures. The key reason 

why this retention of fixed imperfection amplitudes is so important is that the elastic-

plastic parameters η0, λ0 and χh are significantly affected by the treatment of fully plastic 

conditions, so a generalisation to free the description of assumptions concerning the 
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imperfection amplitudes that may occur demands that deep imperfections are carried all the 

way to fully stocky structures. This problem can also be seen in the calculations on axial 

compression of Rotter [44]. It was suggested in Rotter [12] that it is ‘reasonable to stop the 

calculations at perhaps Mk / Mpl ~ 0.9 and not to try to obtain values of λ0 for deep 

imperfections’ since such deep imperfections do not arise in shells susceptible to heavy 

plasticity (p. 9). However, this proposed cut-off is quite arbitrary and makes it difficult to 

build full parameter models that can be automated. An alternative approach is to ignore 

strain hardening which ensures that the full-plastic condition can never be attained. This 

then forces λ0 to always be zero [45], but such a treatment is inconsistent with documented 

test results which show that the full plastic condition is easily attained in perfect cylinders 

under both axial compression and bending at finite slendernesses [26,46,47]. It may be 

noted that these test results also naturally depend on the real imperfection forms and 

amplitudes. 
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Fig. 5 – Proposed modification to the RRD base relationship to allow a more realistic 

characterisation of plasticity in imperfect cylinders. 

 

Instead of the above ad hoc treatments, the RRD formulation is here modified by replacing 

Mpl with Mpl,imp, the full plastic moment of an imperfect cylinder assuming the same 

imperfection form as in the accompanying GMNIA analyses, with a single midspan weld 

depression (Eq. 4) and making Mpl,imp dependent on the imperfection amplitude. The 

relative slenderness is then related to Mpl,imp. This treatment has the benefit of permitting 
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the plasticity-related RRD parameters χh, λ0, η0, ηp and β (including λp) to retain their direct 

physical meaning for imperfect systems (where they now adopt the subscript ‘i’ to become 

χh,i, λ0,i, η0,i, ηp,i and βi), resolving a recurrent difficulty and amplifying the predictive power 

of the RRD framework (Fig. 5b). The elastic-only RRD parameters αG and αI remain 

unchanged from their original definitions. The revised formulation then becomes: 
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The above reduces to the original formulation in Eq. 2 when δ/t = 0 as κ = Rpl,imp / Rpl = 1. 

In the following section, a closed-form empirical expression for the Mpl,imp reference 

resistance is derived, based on the results of a series of computational MNIA analyses. 

 

5.2 Computational MNIA analyses  

A series of computational MNIA analyses was carried out to establish an empirical 

algebraic expression for the reference full plastic moments of imperfect cylinders Mpl,imp. A 

preliminary set of MNIA models with constant r/t = 100 and δ/t = 2.0 was analysed for 

four different dimensionless lengths (Ω = 0.5, 1, 2 and 3; all long enough for the midspan 

weld depression to be unaffected by end boundary conditions) and under two 

representative load arrangements (‘two-point’ and ‘four-point’ bending arrangements). The 

calculated relationships between moment and plastic hinge rotation are shown in Fig. 6, 

where the data indicates that neither the length nor the loading arrangement has any 

significant effect on the equilibrium curves at constant δ/t and r/t. This limits the control 

parameters to only the Level 2 (δ/t) and Level 3 (r/t) system variables for the remaining 

MNIA investigations, which also use the simpler ‘two-point’ loading arrangement.  
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Fig. 6 – Equivalence of MNIA equilibrium curves of moment against plastic hinge rotation 

(full end rotation minus rotation due to elastic deformation) for two loading configurations 

for dimensionless lengths free of boundary effects, r/t = 100 and δ/t = 2. 

 

A total of 350 MNIAs were performed next at Levels 2 and 3, with δ/t varied from 0.01 to 

3 and r/t from 10 to 700 (Table 2; Fig. 3), all at a single representative dimensionless 

length of Ω = 0.5. Since the plastic plateau on a moment-rotation curve using MNIA may 

be slow or numerically problematic for systems with plastic collapse mechanisms that 

involve extensive local bending and surface yielding, the ‘Convergence Indicator Plot’ 

method devised by Doerich and Rotter [16] and implemented for automation in ABAQUS 

by Sadowski et al. [20], was employed. This allows an accurate estimate of the plastic 

collapse moment to be found, based only on a partially-computed portion of a still-rising 

equilibrium curve. The computed Mpl,imp values were normalised by the full plastic moment 

resistance of perfect shells Mpl calculated using the finite-thickness expression in Eq. 1a, 

and are plotted in Fig. 7 against r/t for different imperfection amplitudes δ/t. A selection of 

‘plastic imperfection sensitivity’ relationships were additionally obtained (Fig. 8) for 

constant r/t but varying δ/t. It is evident that small imperfection amplitudes are much less 

detrimental to the plastic reference resistance than they are to the elastic buckling 

resistance under meridional compression. 
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Fig. 7 – Variation of the κ = Mpl,imp / Mpl ‘plastic imperfection sensitivity’ relationship with 

r/t and δ/t for cylinders of length Ω = 0.5 with the weld depression imperfection. 

 

The ‘plastic imperfection sensitivity’ established in this manner is seen to be more severe 

for thicker cylinders (Fig. 8), as an imperfection with an amplitude of a single wall 

thickness represents a deviation covering a significant portion of the radius in a thick 

cylinder but only a negligible portion of the radius in a thin cylinder. (e.g. δ/t = 1 is 10% of 

the radius when r/t = 10 but only 1% when r/t = 100). An attenuation of the severity of the 

sensitivity is observed for thinner cylinders, and beyond r/t ≈ 100 the relationship is largely 

invariant with r/t. It should be added that while the weld depression is a credible 

imperfection in thin shells where the tolerances are difficult to control during fabrication, 

in thicker tubes it is often of less certain relevance. However, it remains a valuable and 

consistent modelling device to investigate imperfection sensitivity across all slendernesses. 
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Fig. 8 – Individual κ = Mpl,imp / Mpl ‘plastic imperfection sensitivity’ relationships at 

different r/t for cylinders of length Ω = 0.5 with the weld depression imperfection. 

 

5.3 Algebraic characterisation 

A generalised power law functional form was adopted to characterise the plastic reference 

resistance for imperfect cylinders, drawing on functional forms widely used in the past for 

cylinders under various fundamental loads [19,44,45,48]. As thin cylinders with r/t > ~100 

achieve a relatively stable ‘plastic imperfection sensitivity’ (Fig. 7), they may be described 

by a conservative lower bound characterisation as follows: 

( ) ( )
0.2 2

0.8
0.2

1 0.014 / 0.23 /
thin

t t
κ

δ δ
= +

 + +
 

 for r/t ≥ 100    (6) 

An adjustment is necessary for thicker cylinders due to the increasing size of the 

imperfection relative to the total radius. The relationship for the thickest practical shell 

with r/t = 10 may be expressed as: 
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The complete relationship is now as follows, with intermediate thicknesses may be 

obtained by simple interpolation: 
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     (8) 

The predictions of the above equations are compared against the computed FE values in 

Figs 7 and 8 and indicate a conservative but representative algebraic representation. 

 

6.  Computed capacity curves in the ‘medium’ length domain 

6.1 Introduction 

A small selection of the extensive number of GMNIA calculations performed for cylinders 

under bending in the ‘medium’ length domain (5.0 ≤ ω ≤ 0.5r/t) are presented in this 

section in the form of modified capacity curves (Fig. 1b) in Mk / Mpl vs Mk / Mcr space (Fig. 

9). Due to space limitations, only capacity curves at constant dimensionless lengths ω = 5 

(boundary with the ‘short’ domain), 10, 50, 100 & 350 (boundary with the ‘transitional’ 

domain for the thinnest analysed shell with r/t = 700) and constant imperfection amplitudes 

δ/t = 0.01 (‘near perfect’), 0.1, 0.5, 1.0 & 2.0 are shown here, with varying r/t to change the 

relative slenderness. The use of a small ‘perturbation’ of δ/t = 0.01 (initially) for ‘near 

perfect’ cylinders was to ensure numerical stability, as it was not possible to achieve 

convergence for a nominally perfect geometry with no mesh perturbation of any kind. The 

‘modified’ capacity curves allow the three regions illustrated in Fig. 1b to be identified: an 

elastic region that is manifest as a nearly vertical line at the right side of every curve in Mk 

/ Mpl vs Mk / Mpl space, a curved elastic-plastic region in the middle, and a strain-hardening 

region exceeding Mpl at the left side of every ‘near perfect’ curve.  
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Fig. 9 – A selection of modified capacity curves in Mk / Mpl vs Mk / Mcr space at constant 

δ/t and ω within the ‘medium’ length domain (δ/t = 0.01 for ‘near perfect’ cylinders). 

 

6.2 The elastic portion of the capacity curve 

The elastic region may be identified as a distinct near-vertical line on the right-hand side of 

each curve that intercepts with Mk / Mcr at a value of α = αGαI. Minor variations due to 

numerical nature of the predictions aside, these analyses indicate that the dimensionless 

geometric groups ω and δ/t largely preserve invariant geometric nonlinearity at varying r/t 

for both ‘near perfect’ and imperfect cylinders in this length domain. The ‘near perfect’ 

curves for δ/t = 0.01 exhibit an elastic reduction in Mk due to geometric nonlinearity of 

approximately 10% at all ω, consistent with previous findings for αG ≈ 0.9 in the ‘medium’ 

length domain (Fig. 2; [21]). For cylinders longer than ω ≈ 10, the vertical intercept on Mk 
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/ Mcr reduces progressively with increasing δ/t (decrease in αI < 1 while αG remains 

constant at ~0.9), with the imperfection having a consistently deleterious effect. However, 

for cylinders shorter than ω ≈ 10, an increase in δ/t eventually causes a rise in αI. This is 

caused by the progressive expansion of the buckling mode with imperfection amplitude, 

which in short cylinders becomes constrained by the end boundary conditions. This 

phenomenon is well documented elsewhere in the shell buckling literature [22-25,27,49].  

 

6.3 The ‘first yield plateau’ in ‘near perfect’ cylinders of intermediate slenderness 

The shape of the capacity curve for ‘near perfect’ cylinders in the elastic-plastic region 

deserves a detailed explanation (Fig. 10), as the phenomenon described here does not 

appear to have been previously reported or understood. In the first calculations on 

cylinders with only tiny imperfections (a ‘perturbation’ amplitude of δ/t = 0.01), plasticity 

was found to affect the buckling resistance at a moment approximately 16% below the first 

yield moment Mel, as calculated by classical beam theory (Eq. 9). This was partly because 

the GMNAs were found to predict the elastic-plastic buckles to develop within the bending 

boundary layer (located 3Λ from the loaded edge; Fig. 4) where surface yielding caused by 

compatibility bending acted as a stronger buckling trigger than the tiny weld depression at 

midspan. The effects of this compatibility bending were eliminated by modelling the near-

edge regions with elastic material, only allowing plasticity in the midspan region. Despite 

this change, plasticity was still found to initiate buckling at a moment ~11% below Mel.  

This was then attributed to early outer surface yielding at the tiny imperfection, so the 

amplitude of the weld depression was reduced by an order of magnitude to δ/t = 0.001.  

Plasticity was then found to initiate buckling at only ~4% below Mel (Figs 10a and b). For 

cylinders with midspan imperfections deeper than δ/t = 0.1, buckling was never found to 

occur at the edge regions which were then no longer modelled as elastic. 

2 2
24
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4 2
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r t r
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π σ π σ
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+ 
       (9) 
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Fig. 10 – Selected data for ‘near-perfect’ cylinders of ‘medium’ length (ω = 350). 

 

The onset of surface yielding appears to have an immediate detrimental effect on the 

bending resistance (Figs 10a and b). With decreasing slenderness, the capacity curves 

exhibit a distinct ‘plateau’ at moments close to the first yield value Mel. This effect occurs 

over a wide range of slendernesses, ~0.7 < λ < ~1.15. The strong interaction between 

plasticity and local buckling can be explained by considering the relative portions of the 

circumference covered by the midspan local buckling mode (estimated as the angular 

distance between the radially innermost to outermost deflections in the incremental 

buckling mode) and the extent of surface and membrane yielding in its vicinity (Fig. 10c). 

Under bending, a large portion of the compressed side is under conditions of 

approximately uniform meridional compression, so that the angular extent of a finite-size 

midspan buckle is proportional to √(rt). In turn, the portion of the cylinder circumference 

that this buckle occupies is proportional to √(rt)/r = √(t/r). As the slenderness decreases 

(reducing r/t) the buckle occupies a progressively wider proportion of the circumference of 



 22

the shell. The regions of surface and membrane yield at buckling similarly grow 

progressively with decreasing r/t (Fig. 10c). If the circumferential extent of membrane 

yield is known, the moment necessary to cause it Mel,pl may be estimated using classical 

beam theory (treating the cylinder as a ‘thin’ circular hollow section for simplicity) as: 

2

2

, 2

2cos sin 2 as 0

4 as / 2cos

y y y el y y

el pl y

pl y yy

M r t
M r t

M r t

θ θ π θ π σ θ
σ

σ θ ππ θ

  + − ≈ →
≈ →    ≈ → 

   (10) 

where θy is the half-angle spread of a cylinder under membrane yield (Fig. 10d).  

 

Estimating θy from GMNAs at buckling (the ‘membrane yield’ curve in Fig. 10c), the 

capacity curve deduced on the basis of Mel,pl is shown in red in Figs 10a and b. This 

capacity curve effectively assumes that the yielded region has no buckling resistance and a 

buckle forms entirely within it. However, as a real buckle is always partially elastic (Fig. 

10c), this red Mel,pl curve must give an upper bound to the computed GMNA curve, while a 

lower bound must be given by the moment at first yield (slightly below the Mel prediction). 

A close inspection of Eq. 10 suggests that Mel,pl rises only very slowly with small values of 

θy, so that these narrow theoretical bounds force the computed GMNA curve to be almost 

flat over a wide range of intermediate slendernesses: a yielded region of 10% of the 

circumference that corresponds approximately to the lower end of the ‘first yield plateau’ 

at λ ≈ 0.7 requires a moment that is only ~4% above the Mel attained at λ ≈ 1.15. The 

flattened shape of these capacity curves appears to be unique to members with circular 

cross-sections under bending. 

This shape of this capacity curve has particularly important implications for the design of 

thicker cylinders under bending. Unlike most other capacity curves, the long plateau close 

to first yield must lead to a very steep fall in resistance from the full plastic moment to the 

first yield moment (Fig. 10a). This dramatic fall is not evident in axially compressed 

cylinders, nor in the buckling of beams and columns. The significantly changed shape of 

the capacity curve means that the traditional established concept [50] that axially 

compressed cylinder strengths offer a safe lower bound for all shell buckling conditions 

may be seriously in error. This important conclusion will be explored by the authors as part 

of a later study. 
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Fig. 11 – A selection of modified capacity curves in Mk / Mpl,imp vs Mk / Mcr space at 

constant δ/t and ω within the ‘medium’ length domain (δ/t = 0.001 for ‘near perfect’ 

cylinders). 

 

6.4 The fully plastic portion of the capacity curves 

The evolution of the left-hand portions of the capacity curves with increasing imperfection 

amplitude seen in Fig. 9, representing the resistance of fully-plastified thick cylinders, 

illustrates the need for the modification to the RRD framework proposed in Fig. 5. This 

portion of the curve becomes increasingly ill-defined at deeper δ/t and ceases to attain Mk = 

Mpl at imperfection greater than δ/t ≈ 0.5. It is no longer possible to represent these curves 

using the original equation of Eq. 2 [14] because the RRD parameters λ0, η0 and χh can no 

longer be identified. The same capacity curves are presented in the alternative form of Mk / 

Mpl,imp vs Mk / Mcr in Fig. 11, where Mpl,imp is the computed MNIA prediction of the 
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reference plastic resistance of the imperfect cylinder (Fig. 7). This transformation 

preserves the intended form of the capacity curve, allowing revised RRD parameters λ0,i, 

η0,i and χh,i to retain their physical meaning and significantly simplifying the task of 

establishing complete sets of characterising RRD parameters. Additionally, the adjusted 

relationship fully preserves the previous description of the elastic behaviour and the values 

of the parameters αG and αI. The values of λ0,i obtained using the amended treatment fall in 

the range of λ0,i from ~0.2 to ~0.3, broadly consistent with values obtained from test 

programmes [4,46,47], with either very long or imperfect cylinders exhibiting λ0,i at the 

lower end of this range. 

 

 

Fig. 12 – A selection of capacity curves in Mk / Mpl vs Mk / Mcr and Mk / Mpl,imp vs Mk / Mcr 

spaces at constant δ/t and Ω within the ‘transitional’ length domain 
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7.  Computed capacity curves in the ‘transitional’ length domain 

A selection of capacity curves established using GMNIAs for cylinders in the elastic 

‘transitional’ length domain (Ω = 0.5 to 7) are presented in two alternative forms in Fig. 12 

in ‘Mk / Mref’ vs Mk / Mcr space for compactness. The capacity curves are shown at the 

fixed dimensionless lengths Ω = 0.5 (boundary with ‘medium’ domain, with no 

ovalisation) 1, 1.5, 3 & 7 (boundary with asymptotic ‘long’ domain, with fully-developed 

ovalisation) and constant imperfection amplitudes δ/t = 0.001 (reduced from 0.01 on the 

basis of conclusions from Section 6 to reflect a ‘near perfect’ system very closely), 0.1, 

0.5, 1.0 & 2.0. The white data points represent the capacity curve resistances expressed 

relative to the full plastic moment of the perfect tube where Mref = Mpl, characterised in 

terms of the established formulation (Eq. 2). The black data points represent the same data 

expressed relative to the full plastic moment of the imperfect tube where Mref = Mpl,imp, 

characterised using the modified formulation (Eq. 5). It may be seen that the revised 

formulation consistently preserves the physical interpretation of the RRD parameters, 

particularly those representing the behaviour of thick imperfect cylinders (λ0,i, η0,i and χh,i). 

It should also be noted that cylinders that are so thick that they should approach the full 

plastic moment do not have imperfection amplitudes that prevent them from doing so. The 

parts of the curves in Fig. 12 for low slenderness shells with imperfection amplitudes in the 

range 0.4 < δ/t < 2.0 therefore do not represent practical structures: these parts of the 

curves are needed only to identify the patterns of behaviour in more slender shells in which 

yielding affects the strength.   

The elastic region on the right-hand side of each curve for ‘near perfect’ cylinders is 

manifest as a vertical line, minor variations due to numerical issues aside, which shows 

that the dimensionless parameter Ω is the appropriate grouping to ensure constant 

geometric nonlinearity even at fully-developed ovalisation. This vertical line migrates from 

a position of Mk / Mcr ≈ 0.9 at Ω = 0.5 to Mk / Mcr ~ 0.5 at Ω = 7 in close agreement with 

previous findings for αG (Fig. 2; [21]), that display an almost 50% reduction in the 

nonlinear elastic buckling resistance due to pre-buckling ovalisation. However, for Ω > 0.5 

and δ/t >> 0 the elastic region becomes increasingly curved and increasingly ill-

represented by a single value of αI (Fig. 1). The elastic regions of capacity curves of very 

imperfect ovalizing cylinders grouped according to constant values of Ω are no longer 

invariant with slenderness, which shows that Ω no longer preserves invariant geometric 
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nonlinearity under these conditions. This phenomenon was explored in more detail through 

a dedicated set of GNIAs by Fajuyitan and Sadowski [34] who suggested that the 

increasingly deep weld depression imperfection acted as a stiffening corrugation against 

the circumferential bending associated with ovalisation at these lengths. Fajuyitan [51] also 

reported that it did not appear to be possible to find an alternative dimensionless length 

parameter that maintained verticality of the elastic portion of the capacity curve for 

ovalising imperfect cylinders, despite numerous possibilities being explored. A 

conservative work-around that preserves the characterisation of such capacity curves 

within the RRD framework is presented next, together with a further exploration of the 

physical interpretation of the computed data.  

 

8.  RRD parameters for cylinders under uniform bending 

8.1 Extraction procedure 

An automatable computational methodology to extract RRD parameters from a capacity 

curve stored in computer memory is presented in this section. The curves are presented in 

terms of Mk / Mpl,imp to avoid the problem of loss of physical interpretation of the 

parameters shown in Fig. 5a. The procedure is illustrated schematically in Fig. 13 on a 

selection of computed capacity curves in both ‘modified’ and ‘traditional’ formats. 

The ‘elastic reduction’ and ‘plastic range’ factors α = αGαI and βi respectively are best 

extracted from the ‘modified’ capacity curve (Figs 13a and b). The value βi identifies the 

slenderness where plasticity first begins to significantly affect the nonlinear resistance Mk, 

and for near perfect or mildly imperfect systems (Fig. 13a) this is usually manifest as a 

clear change in behaviour with decreasing slenderness and is relatively easy to identify by 

visual inspection. However, in more imperfect cylinders, and in particular those with 

significant pre-buckling ovalisation leading to significant loss of verticality in the ‘elastic’ 

portion of the capacity curve, this point becomes increasingly ill-defined and is difficult to 

establish unambiguously on the basis of GMNIA data alone (Fig. 13b). For this reason, a 

complementary set of elastic GNIAs was performed at the same pairs of Ω-δ/t values and 

the resistances compared with the GMNIAs. The point where the GNIA and GMNIA Mk 

load factors begin to diverge beyond a specified tolerance (say, 10
-3

) is easily identified as 

a point P (Figs 13a and b) in Mk / Mpl,imp vs Mk / Mcr space whose vertical coordinate is (1 – 



 27

βi). For ‘modified’ capacity curves established at constant geometric nonlinearity, α should 

identify a vertical line on the elastic portion to the right of the horizontal axis. This was 

found to be largely the case in the ‘medium’ length domain for reasons given earlier (Fig. 

11). However, for long cylinders in the ‘transitional’ length domain, the verticality of the 

curves deteriorates with growing pre-buckling ovalisation and imperfection amplitude (Fig. 

12). It is proposed here to adopt the resistance coordinate of the same point P above to 

select a value for α = αIαG. This guarantees a conservative assessment of the imperfection 

sensitivity α for any curve, eliminating the need to consider the loss of verticality of the 

elastic region.  The combination of α and βi then lead to the ‘plastic limit’ slenderness λp,i = 

√(αGαI / (1 – βi)). 

 

Fig. 13 – Extraction of RRD algebraic parameters from individual capacity curves. 
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The remaining RRD parameters λ0,i, η0,i, ηp,i and χh,i are best extracted from the ‘traditional’ 

form of the capacity curve (Fig. 13c). The ‘squash limit’ λ0.i identifies the attainment of the 

full plastic condition Mpl,imp  (Mk / Mpl,imp = 1). In general, no computed data point will be 

found precisely at this value, but it is sufficient to find an accurate value by linear 

interpolation between the two data points whose resistances are closest to unity. Where no 

computed point exceeded Mk / Mpl,imp = 1, the two data points with the lowest slendernesses 

were used with a backwards linear projection to obtain an approximate value for λ0,i 

(naturally, this could indicate the need for further calculations). The high resolution of 

computed data points ensured that the squash limit slenderness λ0,i was accurately 

identified. The resistance axis intercept of the line passing through these identified points 

was also used to obtain a conservative estimate of the hardening parameter χh,i. Once the 

slendernesses λ0,i and λp,i had been obtained, the data points corresponding to the 

intermediate elastic-plastic region were isolated and the interaction exponent ηi(λi) 

established independently of the remaining parts of the capacity curve. Although any 

functional form for ηi(λi) could be used, the linear variation proposed by Doerich and 

Rotter [16] between the boundary values of η0,i at λ0,i and ηp,i at λp,i and adopted into EN 

1993-1-6:A1 [17] appears to be sufficiently accurate for practical purposes. The parameters 

η0,i and ηp,i can be determined by performing least-squares fits to the GMNIA data (ηlsq in 

Fig. 13) as suggested in Chen et al. [45].  However, this does not always lead to a 

conservative algebraic characterisation of all resistances in the elastic-plastic region. An 

alternative approach, adopted here, is to find values of η0,i and ηp,i that ensure that the 

characterised curve is a conservative lower bound to all computed elastic-plastic 

resistances in the range λ0,i ≤ λi ≤ λp,i (ηlb in Fig. 13). It should be added that the proposal of 

Doerich and Rotter [16] to assume a value of ηp,i derived directly from αG, αI and βi to 

ensure slope continuity at λp,i in Mk / Mpl,imp vs. λi space (Fig. 13) was not adopted here. The 

discontinuity of slope at this location due to a strong interaction of the localised buckling 

mode with plasticity (Fig. 10) would have made this assumption unconservative for this 

structural system. 
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8.2 Conservative algebraic characterisation  

RRD parameters αG, αI, 1 – βi, λ0,i, χh,i, η0,i and ηp,i extracted in the manner detailed above 

are presented here for different dimensionless lengths Ω and imperfection amplitudes δ/t. 

Capacity curves in the ‘medium’ length domain are almost invariant with length when the 

boundary effects are negligible (Figs 9 and 11), and the capacity curve of the longest 

length in the ‘medium’ domain (ω = 350) is the same as that for the shortest length in the 

‘transitional’ domain (Ω = 0.5). For the purposes of simplicity, conservatism and data 

reduction, the capacity curve at Ω = 0.5 is taken to apply to all shorter cylinders. The RRD 

parameters presented in what follows should be used in the modified capacity curve 

formulation given by Eq. 5.  

Although Rotter et al. [21] were the first to suggest an algebraic characterisation for αG, 

this paper offers a more compact relationship focusing solely on the transitional domain:  

( ) ( )( ) 0.8
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+ Ω + Ω Ω >
   (11) 

This equation provides a small 10% reduction of the reference elastic critical buckling 

resistance Mcr due to geometric nonlinearity in medium-length cylinders that do not ovalise 

at all (valid for both rotationally claimed and unrestrained end boundary conditions; Fig. 

2), and reaches a 50% reduction for fully-developed ovalisation in asymptotically long 

cylinders. Similarly, Fajuyitan and Sadowski [34] were the first to offer an algebraic 

characterisation for αI that captured the length-dependent imperfection sensitivity of 

ovalising cylinders, which is reproduced in modified form here: 
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      (12) 

This equation predicts the most severe imperfection sensitivity at Ω = 0.5 and transitions 

smoothly to a less severe invariant sensitivity for asymptotically long cylinders (Fig. 14). 

The slenderness λp,i = √(αGαI / (1 – βi)) corresponds to the attainment of the moment 

Mk / Mpl,imp = 1 – βi where plasticity first begins to significantly influence the bending 

resistance. For perfect non-ovalising thin cylinders, the limiting value of (1 – βi) is the 

inverse of the shape factor for thin-walled circular hollow sections (π/4 ≈ 0.785) (Fig. 10). 
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However, the onset of plasticity occurs at lower moments with increasing imperfection 

amplitudes in medium length cylinders (i.e. at Ω = 0.5) due to earlier surface yielding at 

the midspan weld depression imperfection (first found by Chen et al. [45]), and for longer 

near-perfect cylinders (i.e. at δ/t ≈ 0 but with growing Ω) due to a reduction in the elastic 

section modulus caused by pre-buckling ovalisation. As noted earlier, the presence of a full 

circumference weld depression effectively stiffens the midspan cross-section of a long 

cylinder against ovalisation and thus increases its moment capacity, manifest as an increase 

in (1 – βi) at higher values of both Ω and δ/t.  Because this is an artificial consequence of 

the assumed modelled imperfection (see also Sadowski and Rotter [18]), its effect was 

omitted from the characterised algebraic relationship. The proposed equation for (1 – βi) in 

Eq. 13 is compared with the computed values in Fig. 14: 
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The squash limit relative slendernesses λ0,i is found to be approximately 0.3 for near-

perfect non-ovalising ‘medium’-length cylinders, a value that is consistent with the 

boundary between Class 2 and 3 circular hollow sections under bending in EN 1993-1-1 

[52] at d/t = 70∙√(235/σy). It also matches experimental results relatively well [4,46,47]. It 

is stressed that λ0,i ≈ 0.3 was obtained here assuming a linear strain hardening ratio Eh / E 

of only 0.1%, a conservative assumption corresponding to a statistically-significant finite 

positive gradient of the yield plateau in mild carbon steels [26], and is a theoretical lower 

bound on the possible squash limit λ0 for near-perfect cylinders of ‘medium’ length. The 

effect of both imperfections and ovalisation individually is to reduce the stiffness of the 

fundamental equilibrium path and thus also the squash limit slenderness. However, the 

artificial stiffening caused by a combination of the two effects leads instead to an increase 

in λ0,i (Fig. 14). A conservative equation for λ0,i which ignores this stiffening effect is as 

follows: 
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 where fΩ is given by Eq. 13.     (14) 

The computed surface of extracted lower-bound estimates of the hardening limit χh,i, 

obtained by projection of the data as described above is also shown in Fig. 14. These 



 31

values vary between a minimum around 1.05 and a maximum around 1.4, with little 

discernible pattern. As this region of behaviour corresponds to the bending of very thick 

tubes (r/t < ~20), a lower-bound value of χh,i = 1.05 is proposed for all geometries for 

simplicity. 

 

 

Fig. 14 – 3D surfaces of the computed and fitted α = αG×αI, 1 – βi, λ0,i, χh,i, η0,i and ηp,i in 

the ‘transitional’ and ‘long’ length domains. The reader is invited to find Matlab .fig files 

containing the above data in the authors’ ResearchGate profiles. 
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Lastly, it was shown in Fig. 10 that the capacity curves of perfect non-ovalising cylinders 

exhibit a very flat ‘yield plateau’ where their bending resistance is at approximately the 

first yield moment Mel over a wide range of slendernesses. The shape of this curve is 

characterised by an abrupt change of slope near Mel and thus a near-zero value of ηp,i, as 

well as a low value of η0,i ≈ 0.5 corresponding to a steep descent away from Mpl, values 

which would make for an extremely conservative resistance characterisation if adopted 

universally. However, the effect of both imperfections and ovalisation is to produce more 

rounded and smoother curves (Figs 11 and 12) that are characterised by higher values of 

both η0,i and ηp,i (Fig. 14). It was thus decided to base the algebraic characterisations of η0,i 

and ηp,i on representatively imperfect cylinders, namely those which exhibit imperfection 

amplitudes δ/t corresponding to an average of Fabrication Tolerance Quality Classes A, B 

and C from EN 1993-1-6 [17,19] assuming likely r/t in the range from 100 to 1000. The 

proposed expressions for η0,i and ηp,i are presented in Eqs 15 and 16 respectively and are 

visualised in Fig. 14. These are not lower bound proposals unlike those for α, βi, λ0,i and χh,i 

(Eqs 11 to 14), but the underlying values of η0,i and ηp,i are already representative of a 

lower-bound fit to the GMNIA data (Fig. 13c), so the procedure does not lead to an 

unconservative characterisation viz a viz the simulations. 
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8.3 Reliability analysis based on EN 1990 (2002 version) Annex D 

A reliability analysis was carried out based on the provisions for ‘design assisted by 

testing’ in Annex D of EN 1990 [53] to estimate values for the partial factor on the 

bending resistance γM [54], defined as γM = Rn / Rd where Rn and Rd are the nominal and 

design bending resistances respectively. A database of 141 test results for carbon steel 

tubes under bending was compiled from the available literature: full details may be found 

in the open-access paper by Wang et al. [55]. Of these, 59 specimens were classified as 

‘squat’ according to their dimensionless cross-sectional slenderness d/(tε
2
) which was less 

than 70 (approximately the internationally-established upper slenderness limit for ‘Class 1 
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and 2’ tubular sections [56]), where d and t were taken as the middle surface diameter and 

thickness respectively (using reported measured values where possible) and ε
2
 = 235/σy 

evaluated on the basis of the reported measured values of the 0.2% proof stress. The 

remaining 82 specimens were classified as ‘intermediate’.  The values of d/(tε
2
) for these 

tests did not exceed ~250, with the exception of two specimens by Stephens et al. [57] 

which had d/(tε
2
) of ~477 and ~578. 

A detailed description of the application of this reliability procedure may be found in 

Afshan et al. [58] and will not be reproduced here due to space constraints. The 

coefficients of variation VXi of each i-th basic input random variable Xi (σy, E, ν, d and t) 

were sourced from the background literature and are presented in Table 3, with the 

exception of the tube length L (specifically, the length of the uniform moment region) 

which was treated as deterministic due to lack of data (any deviations would anyway be 

negligible compared with the total length of the tube). The RRD resistance model 

additionally requires the specification of a local imperfection amplitude δ/t, but this 

information is typically also not available. Consequently, values of δ/t were assumed on 

the basis of a deterministic categorical Fabrication Tolerance Quality Class variable 

[17,19] such that δ/t = (1/Q)√(r/t) and the reliability analysis was performed for each of the 

three possible Classes: A (‘Excellent’, smallest imperfections; Q = 40), B (‘High’; Q = 25) 

and C (‘Normal’, deepest imperfections; Q = 16). For each Class, the analysis was 

additionally performed three times: on subsets of 59 ‘squat’ and 82 ‘intermediate’ 

specimens respectively and on the full data set of 141 specimens. The coefficient of 

variation Vrt accounting for the variability of the resistance function grt (X) due to the 

variability of the 5 basic random variables Xi (i.e. Eq. 5, with RRD parameters as defined 

in Section 8.2) is given in Eq. 17, where X is a vector of Xi’s, Xm is a vector of their means 

and σi are their standard deviations (Table 3). This equation was evaluated using both the 

first-order approximation shown on the right (with partial derivatives of the complicated 

RRD resistance function evaluated using finite differences) and the full form shown on the 

left (using a simple Monte Carlo approach), with negligible differences found in the final 

values of Vrt. 
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Table 3 – Statistics of basic variables in the resistance function. 

Basic variable (Xi) Yield stress σy† 
Elastic 

modulus E‡ 

Poisson 

ratio ν⁎ 
Diameter 

d⁑ 
Thickness 

t⁂ 

Mean (Xi,m) / Nominal 
1.21 (≤ 235 MPa) 

1.11 (≥ 355 MPa) 
1.03 1 1 0.976 

Coefficient of Variation 

(VXi) 

0.076 (≤ 235 MPa) 

0.065 (≥355 MPa) 

0.045 0.03 0.01 0.0095 

Sources: †Melcher et al. [60], with linear interpolation used in the range 235 ≤ σy ≤ 355; 

‡Galambos [61]; ⁎JCSS [62]; ⁑Sadowski et al. [33]; ⁂Schmidt and Bartlett [63]. 

The EN 1990 Annex D [53] procedure was used to determine a value of γM,j for each 

specimen which was then combined into an overall value of γM as follows [58], where N is 

the number of specimens in the considered data set (i.e. 59, 82 or 141): 
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Table 4 – Summary of reliability analysis results (note that the values in parentheses 

represent analysis for a reduced data set with the specimens of Sherman [2] removed). 

Fabrication 

Tolerance Quality 

Class 

Mean value 

correction 

factor b 

Coefficients of variation Overall partial 

factor on 

resistance γM Vδ Vrt Vr 

A (‘squat’)† 1.05 (1.03) 0.18 (0.12) 0.07 (0.07) 0.19 (0.14) 1.78 (1.53) 

A (‘intermediate’) ‡ 1.09 (1.09) 0.16 (0.13) 0.05 (0.05) 0.17 (0.14) 1.61 (1.45) 

A (all)⁎ 1.09 (1.09) 0.17 (0.13) 0.06 (0.06) 0.18 (0.14) 1.65 (1.45) 

B (‘squat’)† 1.05 (1.04) 0.18 (0.12) 0.07 (0.07) 0.19 (0.14) 1.76 (1.52) 

B (‘intermediate’) ‡ 1.12 (1.12) 0.16 (0.13) 0.05 (0.05) 0.17 (0.14) 1.55 (1.40) 

B (all)⁎ 1.11 (1.12) 0.17 (0.13) 0.06 (0.06) 0.18 (0.14) 1.60 (1.40) 

C (‘squat’)† 1.07 (1.05) 0.18 (0.13) 0.07 (0.07) 0.19 (0.14) 1.74 (1.51) 

C (‘intermediate’) ‡ 1.15 (1.16) 0.16 (0.13) 0.05 (0.05) 0.17 (0.14) 1.49 (1.34) 

C (all)⁎ 1.15 (1.16) 0.17 (0.13) 0.06 (0.06) 0.18 (0.14) 1.54 (1.36) 

† using a subset of 59 (or 53 without Sherman tests) ‘squat’ specimens; d/(tε
2
) < 70. 

‡ using a subset of 82 (or 70 without Sherman tests) ‘intermediate’ specimens; d/(tε
2
) > 70. 

⁎ using the full data set of 141 (or 123 without Sherman tests) specimens. 
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A summary of the outcomes of the reliability analysis is presented in Table 4, where Vr
2
 = 

(Vδ
2
 + 1)(Vrt

2
 + 1) – 1. The mean value correction factors b, obtained by a least squares fit 

in the linear space of the observed vs predicted (by the RRD resistance function using 

measured inputs) test resistances Robs vs Rpred are predominantly greater than unity 

indicating that the RRD resistance function is on average conservative in predicting the 

resistance of a test (Fig. 15). The coefficient of variation of the errors Vδ is used to quantify 

the variability associated with the resistance model: a higher Vδ indicates a larger scatter in 

the predictions of test results, which in turn leads to more stringent partial factor γM 

recommendations to account for uncertainty introduced by the scatter. A high scatter 

means that a future test result’s Robs / Rpred ratio is likely to fall within a wide range of 

values, potentially even such that Robs / Rpred < 1. Strategies to reduce scatter include 

improving the resistance model, though it is difficult to envisage further enhancements to 

the RRD formulation without adding to the already lengthy list of algebraic parameters, or 

sub-dividing the data into subsets which are known to share a common factor. The latter 

approach was adopted by dividing the data into the ‘squat’ and ‘intermediate’ domains as 

discussed earlier, and it was found that the overall predicted γM is significantly different 

depending on whether the analysis considers the full data set of 141 specimens at once or a 

slenderness-dependent subset.  

The predicted γM partial factors, all above unity, are seen to decrease with increasing 

imperfection amplitude (lower Fabrication Tolerance Quality Class), since the resistance 

function on average predicts lower resistances for tubes that are a priori assumed to be 

more imperfect. Additionally, the RRD resistance function is on average more accurate at 

predicting the test resistances of ‘squat’ specimens as shown in (Fig. 15) where the 

observed to predicted capacity ratio in that slenderness region generally falls between 0.8 

and 1.5 (close to 1 where predications match observations), compared to ‘intermediate’ 

specimens which lie in the observed to predicted capacity ratio range of 1.2 and 1.8. 

Therefore, and perhaps somewhat surprisingly, a higher γM of ~1.75 is necessary to reduce 

the nominal predictions for ‘squat’ specimens down to a design value corresponding to the 

0.1 percentile, compared to γM of ~1.6 for ‘intermediate’ specimens. The values of b and Vδ 

are indicative of this; ‘squat’ specimens’ predictions exhibit a lower b and higher Vδ, 

whereas those for ‘intermediate’ specimens exhibit a higher b and lower Vδ. 
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Fig. 15 – Comparison of observed to predicted bending resistances assuming Fabrication 

Tolerance Quality Class C. Further references may be found in Wang et al. [55]. 

 

In considering the above analysis, it is vital for the reader to be mindful that the validity of 

these computed γM partial factors is intimately dependent on the quality of the data set 

upon which the calibration is performed. In particular, the following are sources of ‘known 

unknowns’ in the test database which contribute to the inflation of scatter and thus also the 

γM factors in a way that cannot be currently quantified: 

• The test database, though substantial, is comprised of specimens of mostly low 

slenderness that are representative of ‘beam’-like CHS members that are arguably 

governed by EN 1993-1-1. The authors are not aware of any test programme to 

have systematically investigated the elastic buckling of very slender cylindrical 



 37

shells under uniform bending other than the two specimens reported in Stephens et 

al. [57]. This is not surprising, given the prohibitively expensive cost of testing 

even a scale model of a silo or wind turbine tower to failure. This means that it is 

currently not possible to reliably calibrate γM for thin shells that fall within the remit 

of EN 1993-1-6, and it seems unlikely to be possible for some time. 

• The forms and amplitudes of the imperfections in the small-scale laboratory 

specimens are generally unknowable and not necessarily representative of large-

scale civil engineering shell structures in situ. Where such information is available 

(e.g. Sadowski et al. [33]), it suggests that many test specimens may be worse than 

Fabrication Tolerance Quality Class C of EN 1993-1-6 [17,19] and thus not 

necessarily representative of the quality of members in construction. 

• The importance of maintaining circularity of the cross-section at the load 

application points in a four-point bending test arrangement has only recently been 

shown to be critical in preventing excessive ovalisation [59]. As many of the 

historic bending tests did not control for this effect, the specimens’ bending 

resistances may be much lower than those of constructed shells and this effect may 

contribute towards the high experimental scatter observed. 

• The database spans a timescale of over four decades and includes contributions 

from researchers working in different environments all over the world. Each team 

would have used different research methodologies and test procedures, as well as 

steel quality representative of the era. The very high moments apparently achieved 

in some of the tests by Sherman [2], for example, which contribute greatly to 

scatter inflation appear to be due to catenary action developed by the tested 

specimens being rotationally fixed at the end supports. The numbers in parentheses 

included in Table 4 indicate the results of the reliability analysis with the Sherman 

tests removed: the significantly reduced experimental scatter now leads to lower Vδ 

and thus Vr predictions, and more favourable γM factors. Analysts should then keep 

in mind that poorly-documented test data from another century may not necessarily 

be an appropriate basis upon which to calibrate partial factors for modern design.  

In conclusion, it is evident that the very high values of γM obtained here should be treated 

with caution, and some consideration given to matching current design practice when 

adopting a suitable value for design purposes. 
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9.  Summary 

This paper has presented the most comprehensive computational study known to date of 

the nonlinear bending resistance of imperfect cylindrical shells under uniform bending, 

including the full range of possible lengths and thicknesses. A conservative algebraic 

characterisation has been proposed based on the processing of over 28,000 nonlinear finite 

element calculations for the resistance relationship within the Reference Resistance Design 

framework, recently adopted as a formal design concept within the European Standard on 

metal shells EN 1993-1-6. The capacity curve upon which the framework is based was 

modified to permit an accurate representation of imperfect systems of low slenderness, a 

crucial modelling device to enable a unified global characterisation. Finally, a reliability 

analysis was performed according to Annex D of EN 1990 (2002) to estimate the most 

probable values of partial factors on the bending resistance γM, although the authors stress 

that any such calibration is intimately related to the quality of the underlying test database. 
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