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Abstract. This paper presents the findings of a computational study into the effect of different support 

conditions and geometric imperfections on the nonlinear elastic stability of tubular members of 

varying length under global bending. Using the finite element analysis software ABAQUS, the tubular 

member was modelled as an isotropic thin-walled cylindrical steel shell and subjected to a uniform 

bending moment distribution. The classical elastic critical buckling moment, the linear bifurcation 

moment and the critical nonlinear buckling moment were computed and the imperfection sensitivity 

under the linear buckling eigenmode was examined. The study demonstrates that the support 

conditions at the edges have a significant effect on the predicted buckling moment for short tubes, but 

that this influence vanishes for longer tubes. Additionally, the influence of initial geometric 

imperfections in the form of the critical buckling eigenmode on the nonlinear buckling strength of the 

tubes appears to be strongly dependent on the length of the tube. A detrimental effect was observed for 

longer tubes but a neutral or mildly beneficial effect for shorter ones. Overall, tubular members under 

global bending do not appear to be as imperfection-sensitive as those under uniform axial 

compression. 

1 INTRODUCTION 

Tubular members are widely used in structural applications in which the dominant loading 

condition is uniform global bending, key examples being chimneys, wind turbine support 

towers, pipelines and tubular piles. These shell structures exhibit a rich nonlinear behaviour 

under bending due to the coupling between cross-section ovalisation and local bifurcation 

buckling [1,2]. 

Ovalisation is a nonlinear phenomenon where the cross-section of a tubular member 

undergoes progressive flattening near its midspan and begins to assume an oval shape in 

response to an increasing meridional curvature [3,4,5,6]. Brazier [7] documented in 1927 that 

ovalisation reflects a progressive reduction in the bending stiffness as a result of a decreasing 

second moment of area of the flattening cross-section [8,9], culminating at a limiting-point 

instability now known as the critical ‘Brazier’ moment (Eq. (1)): 
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where r and t are the radius and thickness of the cylindrical tube, and E and ν = 0.3 are the 

Young’s modulus and is the Poisson’s ratio respectively.  
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Numerous studies conducted since then on the ovalisation instability behaviour of long 

thin-walled cylindrical tubes under bending have shown remarkable agreement with the 

Brazier moment [6,10,11]. However, many of these studies have also shown that this critical 

moment is usually never reached as another type of instability (local bifurcation buckling) 

typically precedes the ovalisation limit point [12,13].  

Ovalisation had not been detected in moderate length thin-walled cylindrical tubes under 

global bending, suggesting early on that the phenomenon is length-dependent [14,15,16]. 

However, it was only recently that Rotter et al. [1] documented that the absence of ovalisation 

in shorter tubes was as a result of the restraining power of the boundary conditions at the ends 

of the tube. This study also demonstrated that the geometrically nonlinear buckling behaviour 

of perfect elastic cylindrical tubes under global bending may be classified into four distinct 

length-dependent domains, termed ‘short’, ‘medium’, ‘transitional’ and ‘long’, with the 

clearly-defined length boundaries that depend on the relative influence of end support 

conditions and ovalisation on the critical buckling behaviour. This is similar to but more 

complex than the well-known classification of cylinders under uniform axial compression 

which exhibit only three length domains, namely ‘short’, ‘medium’ and ‘long’ [17]. The 

additional ‘transitional’ length domain under bending is a direct consequence of the 

ovalisation phenomenon which is not present under uniform axial compression. The buckling 

behaviour of ‘short’ cylinders was additionally found to be particularly sensitive to the nature 

of the restraint at the end supports, a phenomenon illustrated in this paper. 

The imperfection sensitivity of cylinders under axial compression has been reasonably well 

documented through numerous analytical and experimental studies e.g. 

[2,17,18,19,20,21,22,23,24,25], and it is well understood that even minor imperfections lead 

to steep losses in the load-bearing capacity. By contrast, comparatively little is rigorously 

known on the corresponding imperfection sensitivity for cylinders under global bending, 

except what is often inferred without proof from the related but still very distinct load case of 

uniform axial compression. 

The cylinder length is thought particularly likely to change the sensitivity to both the form 

and amplitude of imperfections under global bending due to the presence of the ovalisation, a 

phenomenon absent under uniform compression. The form of imperfection that leads to the 

most detrimental effect is clearly of key interest, and it was traditionally assumed that this was 

achieved by the linear buckling eigenmode (LBA eigenmode) [26]. Indeed, the European 

Standard on the Strength and Stability of Metal Shells [27] proposes the LBA eigenmode as 

the ‘default’ imperfection form in a computational analysis. This concept, derived from 

Koiter’s original perturbation analysis [18] and valid without reservations for classical column 

buckling, remains only a guide in shell buckling because the LBA eigenmode does not 

necessarily always lead to the lowest possible buckling strengths and it does not relate well to 

more realistic imperfection forms originating from specific manufacturing processes [26,28]. 

Rotter [29] suggested that the ‘worst’ imperfection form should depend on the shell geometry 

and loading, though exactly what form it should take is very much open to discussion.  

The aim of this paper is firstly to demonstrate the effect of varying end support conditions 

on the predicted length-dependent nonlinear elastic buckling strength of thin cylindrical tubes 

under global bending, assuming the most common ‘clamped’ and ‘simply-supported’ cases. 

Secondly, the study aims to briefly illustrate the possible imperfection sensitivity of such 

cylinders under the ‘traditional’ linear buckling eigenmode imperfection form.  
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2 NUMERICAL MODELLING USING FINITE ELEMENTS 

The modelling and analyses of the tubular members was performed using the commercial 

finite element analysis software ABAQUS v. 6.13.2 (2013).  

2.1 Model details 

The cylindrical tube was modelled using four-node reduced-integration S4R shell 

elements, details of which are shown in Figure 1.  Only a quarter of the cylinder was modelled 

to take advantage of its double symmetry and to enhance the computational efficiency of the 

analyses, acceptable where the shell structure does not undergo torsional deformations [30]. A 

reference node was created at the centre of the cross-section at the end and connected to the 

edge surface of the tube using a rigid body kinematic coupling. This reference node was 

allowed to displace along the meridional z-axis and to rotate about a transverse y-axis of the 

global coordinate system, with all other degrees of freedom restrained, while also serving as 

the point of application of the applied global bending moment. Further details of the 

numerical model may be found in [1,31]. 
 

 Axis of symmetry: 

plane through L/2 
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elements 
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Figure 1: Illustration of the details of the numerical model, after [31] 
 

The magnitude of the bending moment applied through the reference node was related to 

the classical elastic critical moment Mcl (Eq. (2)): 
 

( )
2

2
2

1
813.1

ν
σπ

−
==

Ert
rtrM clcl  (2) 

 
It should be noted that the above equation is based on the assumption of buckling 

occurring when the most compressed fibre reaches the classical critical buckling stress for 

uniform axial compression σcl = 0.605Et/r. This ‘local buckling hypothesis’ is made on the 

basis that the membrane stresses on the compressed side of the cylinder are approximately 

uniform over a sufficiently wide zone to support an axial compression buckle [2,15]. This 

hypothesis is approximately correct under a pre-buckling membrane stress state with little or 

no local bending deformations or ovalisation. It will be shown that this is no longer the case 
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for either short cylinders which undergo extensive bending deformations due to the influence 

of the end support conditions or for long cylinders which undergo extensive pre-buckling 

ovalisation.  

Where applicable, the mean meridional curvature φ of the cylinder was deduced from the 

end rotation βy (Figure 1) and normalised by the curvature at buckling φcl as predicted by 

linear bending theory: 
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2.2 Geometric and material properties 

It was assumed that the cylinder was made of steel with a Young’s modulus E of 2 × 10
5
 

N/mm
2
 and a Poisson ratio ν of 0.3. Plastic behaviour was not considered in this study. The 

radius and thickness were taken as r = 100 mm and t = 1 mm respectively to maintain a radius 

to thickness (r/t) ratio of 100, typical of a ‘thin’ cylindrical shell. The cylinder length L was 

related to a dimensionless length parameter ω (Eq. (4)) which was varied from ω = 1 to 1600 

to cover the full set of different length domains for cylinders under global bending as 

identified by Rotter et al. [1]. 
 

L

rt
ω =  

(4) 

2.3 End support conditions 

Two different sets of conditions for the normal displacement w of the cylinder wall were 

investigated at the end supports at z = 0 and L: simply-supported and clamped. These 

correspond approximately to the BC1r (Eq. (5)) and BC2f (Eq. (6)) boundary conditions 

respectively as defined in EN 1993-1-6 [27]. 

• Clamped boundary condition (BC1r): 
 

0
dw

w
dz

= =  (5) 

 

• Simply supported boundary condition (BC2f): 
 

2

2
0

d w
w
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The simply-supported condition was modelled by allowing the nodes on the edges of the 

cylinder to rotate freely about the circumferential axis, while for the clamped boundary 

condition this rotation was restrained. It was expected that the effect of changing the support 

conditions would strongest within the ‘short’ length domain (ω ≤ 5). Consequently, the 

cylinder length was varied at very small increments of ω = 0.2 in this range to better capture 

this effect.  
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2.4 Meshing details 

Short cylinders of length L ≤ 6λ, where λ is the linear meridional bending half-wavelength 

from classical shell bending theory (Eq. (7)), were expected to develop extensive bending 

deformations and high local meridional curvatures spanning the full length of the structure. 

Consequently, these short cylinders were discretised with a fine mesh of approximately square 

shell elements of meridional length less than 0.25√rt (i.e. approximately one tenth of λ).  

Cylinders longer than this maintained the same level fine mesh resolution only within 2λ of 

the end support and the midspan axis of meridional symmetry where extensive local bending 

and buckling deformations were anticipated (Figure 1). Between these ranges the cylinder was 

under membrane action only and thus did not require as high a mesh resolution. 
 

rt444.2=λ  (7) 

 

2.5 Types of computational analyses 

For each length, the perfect cylinder was subject to a linear buckling analysis (LBA) to 

detect the critical buckling eigenvalue λ and corresponding eigenmode. The critical buckling 

moment Mcr was then computed as (Eq. (8)): 
 

cr cl
M Mλ=  (8) 

 

The computed linear buckling eigenmode was then imported and applied as an 

imperfection in a subsequent geometrically nonlinear analysis (GNIA). The imperfection 

amplitudes δ were taken as 0 (perfect – GNA), 0.1, 0.25, 0.5 and 1 wall thickness. The GNA 

and GNIA analyses were performed using the Riks [32] modified arc length procedure, and 

terminated at the load proportionality factor LPF corresponding to the first reported negative 

eigenvalues of the global stiffness matrix which denoted either global limit point or local 

bifurcation buckling. The critical buckling moment Mk was then calculated as (Eq. (9)): 
 

3 INFLUENCE OF END SUPPORT CONDITIONS ON THE LENGTH-

DEPENDENT BUCKLING BEHAVIOUR OF PERFECT CYLINDERS 

The end support conditions were found to play an important role in the linear buckling 

resistance and also in determining the location of the boundaries between the shorter length 

domains of the perfect cylindrical tubes under global bending.  

3.1 Linear buckling behaviour (LBA analyses) 

It is well known that the linear bifurcation moment Mcr cannot capture the true strength of 

the cylinder under bending because the formulation does not permit geometric nonlinearity 

and hence excludes the possible effects of ovalisation. However, Mcr is nonetheless computed 

using a full shell theory formulation and thus includes the pre-buckling bending stresses that 

arise due to kinematic compatibility requirements with the end support conditions (Eq. (5) or 

(6)), something that the calculated classical elastic critical buckling moment Mcl (Eq. (2)) 

does not. Further, Mcr plays an important role in the design of metal shells according to EN 

1993-1-6 [27] as the one of the two reference resistances required to determine the physical 

k cl
M LPF M= ×  (9) 
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shell slenderness, the other being the plastic limit strength (in this case the full plastic moment 

Mp).  

The study of Rotter et al. [1] was the first to illustrate the length-dependent relationship 

between the FE-computed Mcr and hand-calculated Mcl moments for clamped end support 

conditions (Eq. (5)). It was found that as the cylinder became shorter (ω → 0), the restraint 

offered by the end supports restricts the growth of an axial compression buckle ever more 

severely which thus requires an ever higher Mcr moment in order to form. The variation of the 

ratio Mcr/Mcl vs ω is illustrated in Figure 2 and clearly shows that Mcr / Mcl → ∞ as ω → 0. An 

alternative way of presenting this relationship is in terms of its inverse (Figure 3), and since 

now Mcl / Mcr → 0 as ω → 0 the vertical axis is well-defined between 0 and 1 instead of ill-

defined between 1 and ∞ as in Figure 2. 

Longer cylinders are not affected by the end restraints or ovalisation, and the ‘local 

buckling hypothesis’ that Mcr ≈ Mcl or Mcr / Mcl → 1 as ω → ∞ becomes a close 

approximation to the predicted linear buckling behaviour in this length range. It was 

furthermore proposed by Rotter et al. [1] that the relationship between Mcr and Mcl for the 

clamped case may be conservatively approximated as: 
 

2 2

4 1
1    or   

1 4 /

cr cl

cl cr

M M

M Mω ω
= + =

+
 

(10) 

 

This fit, also illustrated in Figures 2 and 3, captures the correct behaviour qualitatively at 

either extreme of the length range and has now been incorporated into a new Annex E due to 

be published in an upcoming update to EN 1993-1-6 [27]. 
 

 

Figure 2: Length-dependent linear buckling behaviour of the perfect tubular members: Mcr/Mcl vs ω 
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Figure 3: Length-dependent linear buckling behaviour of the perfect cylinders: Mcl/Mcr vs ω 
 

The calculations have been extended in this study to the case of simply-supported end 

conditions (Eq. (6)). The rotational restraint offered by a simply-supported boundary is not as 

strong as for a clamped boundary and only affects very short cylinders (i.e. ω < 2 or L < 20 

mm). As a result, far shorter cylinders are able to undergo local buckling at a moment close to 

the classical critical buckling moment Mcl than was the case for clamped cylinders, and thus 

the ‘local buckling hypothesis’ is valid over a much wider range of cylinder lengths. The 

moment-length relationship additionally shows a number of distinct ‘waves’ which relate to 

the changing critical buckling mode with length, as illustrated in Figure 4. The same effect is 

also present for clamped end support conditions, although to a much smaller extent. 

It is proposed here that the relationship between Mcr and Mcl for the simply-supported case 

may be approximated as: 
 

5.5 5.5

2 1.5
1    or   

3 1.5 1/

cr cl

cl cr

M M

M Mω ω
= + =

+
 

(11) 

 
This relationship conservatively ignores the ‘waves’ on the curve that result from the 

changing relationship between the critical buckling mode and cylinder length, but still 

captures the qualitative moment-length relationship at either extreme of the length range. This 

relationship becomes slightly unconservative for very short cylinders with ω < 1 that anyway 

fall well outside the range of practical interest. 



Oluwole K. Fajuyitan et al. 

 8

 

Figure 4: Selected linear buckling eigenmodes from LBA analyses of the perfect cylinders 
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3.2 Geometrically nonlinear buckling behaviour (GNA analyses) 

The study of Rotter et al. [1] performed a wide range of nonlinear elastic buckling analyses 

covering the full practical range of lengths for cylinders under global bending with clamped 

end support conditions. The following four ranges of behaviour were identified and 

characterised, with the boundaries between them expressed in terms of the dimensionless 

length ω. 

• ‘Short’ cylinders (ω ≤ 4.8) where the end support conditions completely restrain the 

development of a local axial compression buckle, leading to a significant increase 

in the critical buckling moment Mk to well above the Mcl value. 

• ‘Medium’ length cylinders (4.8 < ω ≤ 50) where the end support conditions no 

longer prevent the development of a local axial compression buckle, but they do 

prevent ovalisation of the cross-section at midspan. The critical buckling moment 

Mk is approximately stable in this length range and close to the classical Mcl value. 

• ‘Transitional’ cylinders (50 < ω ≤ 700) where the restraint of ovalisation provided 

by the end support conditions begins to diminish. The cross-sectional stiffness 

begins to drop and there is a decrease in the critical buckling moment with length. 

• ‘Long’ cylinders (ω > 700) which undergo extensive but stable ‘Brazier’ 

ovalisation. The buckling moment Mk is at just below the classical ‘Brazier’ value 

MBraz (Eq. (1)), which is approximately half of Mcl. 

The full relationship between the ratio of the nonlinear elastic moment Mk to the computed 

linear bifurcation moment Mcr and the dimensionless length ω is illustrated in Figure 5 using a 

log scale for the horizontal axis. The dashed lines represent approximate domain boundaries. 
 

 

Figure 5: Nonlinear buckling behaviour of the perfect cylinders: Mk/Mcr vs ω 
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These nonlinear calculations were repeated in this study for the case of a cylinder under 

simply-supported end conditions, also illustrated in Figure 5, and the same length domains 

may be qualitatively identified as for the clamped case. The main difference is that where the 

boundary between ‘short’ and ‘medium’ length cylinders fell at ω ≈ 4.8 for the clamped case, 

this boundary appears to come rather sooner at ω ≈ 3.2 for the simply-supported case. This 

may be attributed once again to the weaker rotational restraint offered by this boundary 

condition, allowing shorter cylinders to develop a local axial compression buckle on the 

compressed side at a moment close to the classical elastic critical Mcl value. 

The nature of the end support conditions does not appear to have any significant effect on 

the onset of ovalisation nor on the extent of its influence on the nonlinear critical buckling 

moment Mk. In both cases the start of the ‘transitional’ length domain occurs at ω ≈ 50, and 

thereafter both support conditions effectively follow the same relationship.  
 

 

Figure 6: Nonlinear moment-curvature equilibrium paths for short clamped and simply-supported 

cylinders with ω = 3 
 

The ‘short’ length domain deserves special mention. Short cylinders under bending exhibit 

a deep circumferential fold akin to a corrugation developing on the compressed side in a 

nonlinear analysis, and thus behave very differently to other length domains. The relationship 

between the applied moment and the mean meridional curvature (Figure 6) shows an initially 

linear path which begins to undergo significant geometric softening at applied bending 

moments, significantly higher than Mcl. This softening behaviour is not due to ovalisation but 

is a result of detrimental changes of geometry caused by a progressively deeper 

circumferential fold (Figure 7a to Figure 7c), a mechanism which does not appear to be well 

documented in the voluminous shells literature on this topic. Both sets of support conditions 

exhibit this softening behaviour, although the equilibrium path is noticeably stiffer for the 

clamped case due to the increased rotational restraint. 
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Figure 7: Selected incremental nonlinear buckling modes from GNA analyses of the perfect cylinders 
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4 INFLUENCE OF INITIAL GEOMETRIC IMPERFECTIONS ON THE 

NONLINEAR ELASTIC BUCKLING STRENGTH (GNIA ANALYSES) 

The computed LBA eigenmodes were introduced as imperfections into the nonlinear 

buckling analyses in order to obtain a first picture of the potential imperfection sensitivity of 

cylinders under global bending. This picture is by no means complete, and further research is 

needed to establish a more complete understanding of this relationship. In particular, other 

imperfection forms must be taken into account, as it is very possible that one imperfection 

form will be very detrimental within one length domain but another will be more detrimental 

within another length domain. This will depend on the physical basis of the imperfection form 

and how it relates to the mechanics of the structural behaviour within any particular length 

domain, complicated by the nonlinear effects of the end boundary layer and midspan 

ovalisation. 

The relationship between the computed nonlinear buckling moments Mk and the 

dimensionless length ω are illustrated in Figure 8 and Figure 9 for the clamped and simply-

supported end conditions respectively and for different imperfection amplitudes of the LBA 

eigenmode: δ/t = 0 (perfect), 0.1, 0.25, 0.5 and 1. A number of observations may be now 

made. 
 
 

 

Figure 8: Nonlinear buckling behaviour of imperfect cylinders with clamped end conditions: Mk/Mcr vs 

ω as a function of δ/t 
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Figure 9: Nonlinear buckling behaviour of imperfect cylinders with simply-supported end conditions: 

Mk/Mcr vs ω as a function of δ/t 
 

First, sensitivity to the LBA eigenmode imperfection appears to be very length dependent. 

For example, a small imperfection amplitude of δ/t = 0.1 may have either a neutral or even 

mildly beneficial effect (for ‘short’ cylinders), a mildly detrimental effect (for cylinders on the 

boundary between ‘short’ and ‘medium’ or ‘transitional’ and ‘long’) or a strongly detrimental 

effect (for cylinders on the boundary between ‘medium’ and ‘transitional’). The reason for 

this may be attributed to the changing shape of the both the LBA eigenmode (Figure 4) and 

critical nonlinear buckling mode (Figure 5) with length, and the effect of one on the other. 

Second, the decreased stiffness of an even slightly imperfect cylinder appears to permit 

ovalisation to have a detrimental effect on the buckling strength at significantly shorter 

lengths than for perfect cylinders. This is apparent in the fact that the boundary between 

‘medium’ and ‘transitional’ length cylinders no longer falls at a well-defined ω ≈ 50 but 

somewhere closer to ω ≈ 10. Since most tubes and cylinders in practice are at least a little 

imperfect, this suggests that basing a strength assessment on the ‘perfect’ moment-length 

relationship may be unconservative. More research is needed to establish whether this is the 

case for all practical imperfection forms and r/t ratios. 

Third, the length boundaries between ‘short’ and ‘medium’ or ‘transitional’ and ‘long’ 

cylinders appear unaffected by the presence or the amplitude of the LBA eigenmode 

imperfection, suggesting that the behaviour at either length extreme is largely insensitive to 

these imperfections. It was demonstrated in Figure 6 that ‘short’ cylinders exhibit a distinctive 

limit point global buckling behaviour without developing any local axial compression 

buckles, and thus are not likely to be affected detrimentally by the presence of an 

imperfection in the form of an LBA eigenmode that is similar in shape to a local axial 

compression buckle. By contrast, an imperfection in the form of localised axial compression 
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buckles (Figure 4e) does not have as great a detrimental effect on ‘long’ cylinders either due 

the considerable strength and stiffness reduction that they already suffer due to fully-

developed ovalisation. 

Given the significant variations in behaviour within each length domain and the 

uncertainty in the location of the domain boundaries under the influence of imperfections, it is 

both difficult and unfeasible to devise a single imperfection sensitivity relationship for this 

load case that would be valid for all lengths. An attempt at formulating a relationship between 

the strength reduction on the perfect shell αI (Eq. (12)) and the imperfection amplitude δ/t for 

each length domain individually, based on an averaged value of αI for that length domain, is 

shown in Figure 10 and Figure 11 for the clamped and simply-supported end conditions 

respectively. The scatter in each length domain is represented by error bars showing the 

standard error defined as σ/√n, where σ is the standard deviation and n is the number of data 

points. 
 

,

,

k GNIA

I

k GNA

M

M
α =  

(12) 

 
 

 

Figure 10: Imperfection sensitivity curves for cylinders with clamped end conditions, averaged on 

each length domain (as categorised for perfect cylinders) for the LBA eigenmode imperfection form 
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Figure 11: Imperfection sensitivity curves for cylinders with simply-supported end conditions, 

averaged on each length domain (as categorised for perfect cylinders) for the LBA eigenmode 

imperfection form 
 

Though approximate, these relationships clearly illustrate the varying imperfection 

sensitivity and the scatter in predicted strengths for each length domain. The anomalous 

behaviour of the ‘medium’ curve for cylinders under simply-supported end conditions (Figure 

11) is a reflection of considerable scatter visible in the computed buckling strengths near the 

start of this length domain (Figure 9). It may be that the definition of the boundary of the 

‘short’ and ‘medium’ length domains, set at ω = 3.2 for perfect geometries under these 

support conditions, is no longer appropriate for imperfect ones.  

Lastly, it should be stressed that these results are valid only for the LBA eigenmode 

imperfection form which may or may not be realistic representations of cylinders in practical 

applications. The authors are actively working to extend the applicability of these 

relationships to other imperfection forms and r/t ratios, and to characterise them algebraically 

for practical use. 

5 CONCLUSIONS 

The following may be deduced from this computational study for cylindrical tubes under 

global bending: 

• The influence of varying the end support conditions on the linear and nonlinear 

buckling strengths of the elastic tubes is effectively restricted to the ‘short’ and 

‘medium’ cylinder length domains only. These are the length domains that are still 

under the influence of by the boundary layer of local bending deformations caused by 

the end support conditions. 
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• For cylindrical tubes with simply-supported end conditions, the dimensionless length 

range for the ‘short’ length domain is suggested to apply to ω = L/√(rt) < 3.2 while the 

range for the ‘medium’ length domain is then 3.2 ≤ ω < 50. This is different from the 

corresponding ranges found in a previous study for cylinders with clamped end 

conditions, where the ‘short’ length domain is taken as valid on ω < 4.8 while the 

‘medium’ length domain is valid on 4.8 ≤ ω < 50. 

• The influence of a linear buckling eigenmode imperfection form on the buckling 

strength of cylindrical under global bending is strongly length-dependent, with the most 

detrimental effect visible for the ‘medium’ length domain. Other domains show only a 

mildly detrimental effect, a neutral effect or even a mildly beneficial effect. 

• More research is needed to extend the validity of these conclusions to other 

imperfection forms and radius to thickness (r/t) ratios as a prelude to a final 

characterisation of the imperfection sensitivity of cylindrical tubes under global bending 

for design purposes. 

6 ACKNOWLEDGEMENTS 

The authors wish to gratefully acknowledge the financial support provided by the 

Petroleum Technology Development Fund (PTDF). 

7 REFERENCES 

[1] Rotter J.M., Sadowski A.J. and Chen L., "Nonlinear stability of thin elastic cylinders of different 

length under global bending", International Journal of Solids and Structures, 51(15–16), 2826-

2839, 2014. 

[2] Calladine C.R., Theory of Shell Structures, Cambridge University Press, 1983. 

[3] Chen L., Doerich C. and Rotter J.M., "A study of cylindrical shells under global bending in the 

elastic‐plastic range", Steel Construction, 1(1), 59-65, 2008. 

[4] Chen L., Peng Y.L. and Wan L., "Nonlinear Buckling Behaviour of Imperfect Cylindrical Shells 

under Global Bending in the Elastic-Plastic Range", Applied Mechanics and Materials, 2041045-

1052, 2012. 

[5] Elchalakani M., Zhao X.L. and Grzebieta R.H., "Plastic mechanism analysis of circular tubes 

under pure bending", International Journal of Mechanical Sciences, 44(6), 1117-1143, 2002. 

[6] Li L. and Kettle R., "Nonlinear bending response and buckling of ring-stiffened cylindrical shells 

under pure bending", International Journal of Solids and Structures, 39(3), 765-781, 2002. 

[7] Brazier L.G., "On the Flexure of Thin Cylindrical Shells and Other Thin Sections", Proceedings of 

the Royal Society of London.Series A, 116(773), 104-114, 1927. 

[8] Wadee M.K., Wadee M.A., Bassom A.P. and Aigner A.A., "Longitudinally Inhomogeneous 

Deformation Patterns in Isotropic Tubes under Pure Bending", Proceedings: Mathematical, 

Physical and Engineering Sciences, 462(2067), 817-838, 2006. 

[9] Tatting B., Gürdal Z. and Vasiliev V., "The Brazier effect for finite length composite cylinders 

under bending", International Journal of Solids and Structures, 34(12), 1419-1440, 1997. 

[10] Karamanos S.A., "Bending Instabilities of Elastic Tubes", International Journal of Solids and 

Structures, 39(8), 2059-2085, 2002. 

[11] Tatting B.F., Gurdal Z. and Vasiliev V.V., "Nonlinear shell theory solution for the bending 

response of orthotropic finite length cylinders including the Brazier effect", Proceedings of the 

36th Structures, Structural Dynamics and Materials Conference, New Orleans, LA, 966-976, 

1995. 



Oluwole K. Fajuyitan et al. 

 17

[12] Libai A. and Bert C.W., "A mixed variational principle and its application to the nonlinear 

bending problem of orthotropic tubes—II. application to nonlinear bending of circular cylindrical 

tubes", International Journal of Solids and Structures, 31(7), 1019-1033, 1994. 

[13] Aksel’rad E. and Emmerling F., "Collapse load of elastic tubes under bending", Israel Journal of 

Technology, 2285, 1984. 

[14] Mathon C. and Limam A., "Experimental collapse of thin cylindrical shells submitted to internal 

pressure and pure bending", Thin-Walled Structures, 44(1), 39-50, 2006. 

[15] Axelrad E., "Refinement of Buckling-Load Analysis for Tube Flexure by way of considering Pre-

critical Deformation", Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk, 

Mekhanika i Mashinostroenie, 4133-139, 1965. 

[16] Seide P. and Weingarten V.I., "On the Buckling of Circular Cylindrical Shells Under Pure 

Bending", Journal of Applied Mechanics, 28(1), 112-116, 1961. 

[17] Yamaki N., Elastic Stability of Circular Cylindrical Shells, Elsevier Science, 1984. 

[18] Koiter W. On the Stability of Elastic Equilibrium. PhD Thesis. Delft University (in Dutch); 1945. 

[19] Rotter J.M. and Teng J., "Elastic stability of cylindrical shells with weld depressions", Journal of 

Structural Engineering, 115(5), 1244-1263, 1989. 

[20] Donnell L. and Wan C., "Effect of Imperfections on Buckling of Thin Cylinders and Columns 

under Axial Compression", Journal of Applied Mechanics - Transactions of the ASME, 17(1), 73-

83, 1950. 

[21] Koiter W., "The Effect of Axisymmetric Imperfections on the Buckling of Cylindrical Shells 

under Axial Compression", Proc Koninklijke Nederlandse Akademie van Wetenschappen, 265-

279, 1963. 

[22] Hutchinson J. and Koiter W., "Postbuckling Theory", Applied Mechanics Reviews, 23(12), 1353-

1366, 1970. 

[23] Cohen G.A., "Computer Analysis of Imperfection Sensitivity of Ring-stiffened Orthotropic Shells 

of Revolution", AIAA Journal, 9(6), 1032-1039, 1971. 

[24] Arbocz J. and Sechler E., "On the Buckling of Axially Compressed Imperfect Cylindrical Shells", 

Journal of Applied Mechanics, 41(3), 737-743, 1974. 

[25] Singer J., "The Status of Experimental Buckling Investigations of Shells", Buckling of Shells, 

Springer, 501-533, 1982. 

[26] Rotter J., "Cylindrical shells under axial compression", Buckling of thin metal shells, 42-87, 2004. 

[27] EN 1993-1-6. Eurocode 3: Design of Steel Structures. Part 1-6: Strength and Stability of Shell 

Structures. 2007. 

[28] Schneider W., Höhn K., Timmel I. and Thiele R., "Quasi-collapse-affine imperfections at slender 

wind-loaded cylindrical steel shells", Proceedings of second European Conference on 

Computational Mechanics-ECCM-2001, Cracow, Poland CD-Rom, 2001. 

[29] Rotter J.M., "The new framework for shell buckling design and the European shell buckling 

recommendations fifth edition", Journal of Pressure Vessel Technology, 133(1), 011203, 2011. 

[30] Teng J. and Song C., "Numerical models for nonlinear analysis of elastic shells with eigenmode-

affine imperfections", International Journal of Solids and Structures, 38(18), 3263-3280, 2001. 

[31] Sadowski A.J. and Rotter J.M., "Solid or Shell Finite Elements to model Thick Cylindrical Tubes 

and Shells under Global Bending", International Journal of Mechanical Sciences, 74(0), 143-153, 

2013. 

[32] Riks E., "An incremental approach to the solution of snapping and buckling problems", 

International Journal of Solids and Structures, 15(7), 529-551, 1979. 

  


