28 research outputs found

    Extracellular DNA, cell surface proteins and c-di-GMP promote biofilm formation in Clostridioides difficile.

    Get PDF
    Clostridioides difficile is the leading cause of nosocomial antibiotic-associated diarrhoea worldwide, yet there is little insight into intestinal tract colonisation and relapse. In many bacterial species, the secondary messenger cyclic-di-GMP mediates switching between planktonic phase, sessile growth and biofilm formation. We demonstrate that c-di-GMP promotes early biofilm formation in C. difficile and that four cell surface proteins contribute to biofilm formation, including two c-di-GMP regulated; CD2831 and CD3246, and two c-di-GMP-independent; CD3392 and CD0183. We demonstrate that C. difficile biofilms are composed of extracellular DNA (eDNA), cell surface and intracellular proteins, which form a protective matrix around C. difficile vegetative cells and spores, as shown by a protective effect against the antibiotic vancomycin. We demonstrate a positive correlation between biofilm biomass, sporulation frequency and eDNA abundance in all five C. difficile lineages. Strains 630 (RT012), CD305 (RT023) and M120 (RT078) contain significantly more eDNA in their biofilm matrix than strains R20291 (RT027) and M68 (RT017). DNase has a profound effect on biofilm integrity, resulting in complete disassembly of the biofilm matrix, inhibition of biofilm formation and reduced spore germination. The addition of exogenous DNase could be exploited in treatment of C. difficile infection and relapse, to improve antibiotic efficacy

    Cyclic diGMP regulates production of sortase substrates of Clostridium difficile and their surface exposure through ZmpI protease-mediated cleavage.

    Get PDF
    In Gram-positive pathogens, surface proteins may be covalently anchored to the bacterial peptidoglycan by sortase, a cysteine transpeptidase enzyme. In contrast to other Gram-positive bacteria, only one single sortase enzyme, SrtB, is conserved between strains of Clostridium difficile. Sortase-mediated peptidase activity has been reported in vitro, and seven potential substrates have been identified. Here, we demonstrate the functionality of sortase in C. difficile. We identify two sortase-anchored proteins, the putative adhesins CD2831 and CD3246, and determine the cell wall anchor structure of CD2831. The C-terminal PPKTG sorting motif of CD2831 is cleaved between the threonine and glycine residues, and the carboxyl group of threonine is amide-linked to the side chain amino group of diaminopimelic acid within the peptidoglycan peptide stem. We show that CD2831 protein levels are elevated in the presence of high intracellular cyclic diGMP (c-diGMP) concentrations, in agreement with the control of CD2831 expression by a c-diGMP-dependent type II riboswitch. Low c-diGMP levels induce the release of CD2831 and presumably CD3246 from the surface of cells. This regulation is mediated by proteolytic cleavage of CD2831 and CD3246 by the zinc metalloprotease ZmpI, whose expression is controlled by a type I c-diGMP riboswitch. These data reveal a novel regulatory mechanism for expression of two sortase substrates by the secondary messenger c-diGMP, on which surface anchoring is dependent

    The S-layer protein of a Clostridium difficile SLCT-11 strain displays a complex glycan required for normal cell growth and morphology.

    Get PDF
    Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-Ξ±-Rha-3-Ξ±-Rha-3-Ξ±-Rha-3-Ξ²-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-Ξ²-Rha-4-Ξ±-Glc-3-Ξ²-Rha-4-(Ξ±-Rib-3-)Ξ²-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer

    Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores.

    Get PDF
    Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p≀0.01). A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth

    The Clostridium difficile Cell Wall Protein CwpV is Antigenically Variable between Strains, but Exhibits Conserved Aggregation-Promoting Function

    Get PDF
    Clostridium difficile is the main cause of antibiotic-associated diarrhea, leading to significant morbidity and mortality and putting considerable economic pressure on healthcare systems. Current knowledge of the molecular basis of pathogenesis is limited primarily to the activities and regulation of two major toxins. In contrast, little is known of mechanisms used in colonization of the enteric system. C. difficile expresses a proteinaceous array on its cell surface known as the S-layer, consisting primarily of the major S-layer protein SlpA and a family of SlpA homologues, the cell wall protein (CWP) family. CwpV is the largest member of this family and is expressed in a phase variable manner. Here we show CwpV promotes C. difficile aggregation, mediated by the C-terminal repetitive domain. This domain varies markedly between strains; five distinct repeat types were identified and were shown to be antigenically distinct. Other aspects of CwpV are, however, conserved. All CwpV types are expressed in a phase variable manner. Using targeted gene knock-out, we show that a single site-specific recombinase RecV is required for CwpV phase variation. CwpV is post-translationally cleaved at a conserved site leading to formation of a complex of cleavage products. The highly conserved N-terminus anchors the CwpV complex to the cell surface. Therefore CwpV function, regulation and processing are highly conserved across C. difficile strains, whilst the functional domain exists in at least five antigenically distinct forms. This hints at a complex evolutionary history for CwpV

    Vaccination against type F botulinum toxin using attenuated Salmonella enterica var Typhimurium strains expressing the BoNT/F H(C) fragment.

    No full text
    The utility of the htrA, pagC and nirB promoters to direct the expression of the carboxy-terminal (H(C)) fragment of botulinum toxin F (FH(C)) in Salmonella enterica var Typhimurium has been evaluated. Only low levels of serum antibody were induced after immunisation, and some protection against botulinum toxin type F was demonstrated after oral immunisation of mice with two doses of any of these recombinant Salmonella. Immunisation with two doses of recombinant Salmonella expressing FH(C) from the htrA promoter gave the greatest protection, against up to 10,000 mouse lethal doses of botulinum toxin type F. These results demonstrate the feasibility of an orally delivered vaccine against botulinum toxin type F

    Immunization with Bacillus Spores Expressing Toxin A Peptide Repeats Protects against Infection with Clostridium difficile Strains Producing Toxins A and B

    No full text
    Clostridium difficile is a leading cause of nosocomial infection in the developed world. Two toxins, A and B, produced by most strains of C. difficile are implicated as virulence factors, yet only recently has the requirement of these for infection been investigated by genetic manipulation. Current vaccine strategies are focused mostly on parenteral delivery of toxoids. In this work, we have used bacterial spores (Bacillus subtilis) as a delivery vehicle to evaluate the carboxy-terminal repeat domains of toxins A and B as protective antigens. Our findings are important and show that oral immunization of the repeat domain of toxin A is sufficient to confer protection in a hamster model of infection designed to closely mimic the human course of infection. Importantly, neutralizing antibodies to the toxin A repeat domain were shown to be cross-reactive with the analogous domain of toxin B and, being of high avidity, provided protection against challenge with a C. difficile strain producing toxins A and B (A(+)B(+)). Thus, although many strains produce both toxins, antibodies to only toxin A can mediate protection. Animals vaccinated with recombinant spores were fully able to survive reinfection, a property that is particularly important for a disease with which patients are prone to relapse. We show that mucosal immunization, not parenteral delivery, is required to generate secretory IgA and that production of these neutralizing polymeric antibodies correlates with protection. This work demonstrates that an effective vaccine against C. difficile can be designed around two attributes, mucosal delivery and the repeat domain of toxin A
    corecore