11 research outputs found

    Globular Clusters: DNA of Early-Type galaxies?

    Get PDF
    This paper explores if the mean properties of Early-Type Galaxies (ETG) can be reconstructed from "genetic" information stored in their GCs (i.e., in their chemical abundances, spatial distributions and ages). This approach implies that the formation of each globular occurs in very massive stellar environments, as suggested by some models that aim at explaining the presence of multi-populations in these systems. The assumption that the relative number of globular clusters to diffuse stellar mass depends exponentially on chemical abundance, [Z/H], and the presence of two dominant GC sub-populations blue and red, allows the mapping of low metallicity halos and of higher metallicity (and more heterogeneous) bulges. In particular, the masses of the low-metallicity halos seem to scale up with dark matter mass through a constant. We also find a dependence of the globular cluster formation efficiency with the mean projected stellar mass density of the galaxies within their effective radii. The analysis is based on a selected sub-sample of galaxies observed within the ACS Virgo Cluster Survey of the {\it Hubble Space Telescope}. These systems were grouped, according to their absolute magnitudes, in order to define composite fiducial galaxies and look for a quantitative connection with their (also composite) globular clusters systems. The results strengthen the idea that globular clusters are good quantitative tracers of both baryonic and dark matter in ETGs.Comment: 20 pages, 28 figures and 5 table

    Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing

    Full text link
    We report the formation of sub-5 nm ultrashallow junctions in 4 inch Si wafers enabled by the molecular monolayer doping of phosphorous and boron atoms and the use of conventional spike annealing. The junctions are characterized by secondary ion mass spectrometry and non-contact sheet resistance measurements. It is found that the majority (~70%) of the incorporated dopants are electrically active, therefore, enabling a low sheet resistance for a given dopant areal dose. The wafer-scale uniformity is investigated and found to be limited by the temperature homogeneity of the spike anneal tool used in the experiments. Notably, minimal junction leakage currents (<1 uA/cm2) are observed which highlights the quality of the junctions formed by this process. The results clearly demonstrate the versatility and potency of the monolayer doping approach for enabling controlled, molecular-scale ultrashallow junction formation without introducing defects in the semiconductor.Comment: 21 pages, 5 figure

    A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system

    Get PDF
    We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently obtained Hubble Space Telescope/Advanced Camera for Surveys mosaic, and new Subaru/Suprime-Cam and archival Canada–France–Hawaii Telescope/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/Deep Imaging Multi-Object Spectrograph, Gemini/Gemini Multi-Object Spectrograph and Multiple Mirror Telescope/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous data sets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649

    The Southern Photometric Local Universe Survey (S-PLUS): improved SEDs, morphologies, and redshifts with 12 optical filters

    No full text
    The Southern Photometric Local Universe Survey (S-PLUS) is imaging similar to 9300 deg(2) of the celestial sphere in 12 optical bands using a dedicated 0.8mrobotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k x 9.2k e2v detector with 10 mu m pixels, resulting in a field of view of 2 deg(2) with a plate scale of 0.55 arcsec pixel-1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (vertical bar b vertical bar > 30 degrees, 8000 deg(2)) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg(2)). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, Hd, G band, Mg b triplet, H alpha, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (dz /(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)(3). The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of similar to 336 deg(2) of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.© 2019 The Author(s).Published by Oxford University Press on behalf of the Royal Astronomical SocietyThe S-PLUS project, including the T80S robotic telescope and the S-PLUS scientific survey, was founded as a partnership between the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), the Observatorio Nacional (ON), the Federal University of Sergipe (UFS), and the Federal University of Santa Catarina (UFSC), with important financial and practical contributions from other collaborating institutes in Brazil, Chile (Universidad de La Serena), and Spain (Centro de Estudios de Fisica del Cosmos de Aragon, CEFCA). The members of the collaboration are grateful for the support received from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq; grants 312333/2014-5, 306968/2014-2, 142436/2014-3, 459553/2014-3, 400738/2014-7, 302037/2015-2, 312307/2015-2, 300336/2016-0, 304184/2016-0, 304971/2016-2, 401669/2016-5, 308968/2016-6, 309456/2016-9, 421687/2016-9, 150237/2017-0, 311331/2017-3, 304819/2017-4, and 200289/2017-9), FAPESP (grants 2009/54202-8, 2011/51680-6, 2014/07684-5, 2014/11806-9, 2014/13723-3, 2014/18632-6, 2016/17119-9, 2016/12331-0, 2016/21532-9, 2016/21664-2, 2016/23567-4, 2017/01461-2, 2017/23766-0, 2018/02444-7, and 2018/21661-9), the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES; grants 88881.030413/2013-01 and 88881.156185/2017-01), the Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ; grants 202.876/2015, 202.835/2016, and 203.186/2016), the Financiadora de Estudos e Projetos (FINEP; grants 1217/13-01.13.0279.00 and 0859/10-01.10.0663.00), the Direccion de Investigacion y Desarrollo de la Universidad de La Serena (DIDULS/ULS; projects PR16143 and PTE16146 and the Programa de Investigadores Asociados), and the Direccion de Postgrado y Postitulo. TCB, VMP, and DDW acknowledge the support from the Physics Frontier Center for the Evolution of the Elements (JINA-CEE) through the US National Science Foundation (grant PHY 14-30152). JLNC is grateful for financial support received from the Southern Office of Aerospace Research and development (SOARD; grants FA9550-15-1-0167 and FA9550-18-1-0018) of the Air Force Office of the Scientific Research International Office of the United States (AFOSR/IO). YJT and RAD acknowledge support from the Spanish National Research Council (CSIC) I-COOP + 2016 program (grant COOPB20263), and the Spanish Ministry of Economy, Industry, and Competitiveness (MINECO; grants AYA2013-48623-C2-1-P and AYA2016-81065-C2-1-P). RAOM acknowledges support from the Direccion General de Asuntos del Personal Academico of the Universidad Nacional Autonoma de Mexico (DGAPA-UNAM) through a post-doctoral fellowship from the Programa de Becas Posdoctorales en la UNAM. This work has made use of data from the Sloan Digital Sky Survey. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Enenergy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), the New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We are grateful for the contributions of CTIO staff in helping in the construction, commissioning, and maintenance of the telescope and camera and we are particularly thankful to the CTIO director, Steve Heathcote, for his support at every phase, without which this project would not have been completed. We thank Cesar Iniguez for making the 2D measurements of the filter transmissions at CEFCA. We warmly thank David Cristobal-Hornillos and his group for helping us to install and run the reduction package JYPE version 0.9.9 in the S-PLUS computer system in Chile. We warmly thank Mariano Moles, Javier Cenarro, Tamara Civera, Sergio Chueca, Javier Hernandez Fuertes, Antonio Marin Franch, Jesus Varella, and Hector Vazquez Ramio -the success of the S-PLUS project relies on the dedication of these and other CEFCA staff members in building OAJ and running J-PLUS and J-PAS. We deeply thank Rene Laporte and INPE, as well as Keith Taylor, for their contributions to the T80S camera
    corecore