51 research outputs found

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure

    A transient tribodynamic approach for the calculation of internal combustion engine piston slap noise

    Get PDF
    An analytical/numerical methodology is presented to calculate the radiated noise due to internal combustion engine piston impacts on the cylinder liner through a film of lubricant. Both quasi-static and transient dynamic analyses coupled with impact elasto-hydrodynamics are reported. The local impact impedance is calculated, as well as the transferred energy onto the cylinder liner. The simulations are verified against experimental results for different engine operating conditions and for noise levels calculated in the vicinity of the engine block. Continuous wavelet signal processing is performed to identify the occurrence of piston slap noise events and their spectral content, showing good conformance between the predictions and experimentally acquired signals

    Transport-Structural Modelling of Corrosion Induced Cracking

    No full text
    International audienceTransport of corrosion products into pores and cracks in concrete must be considered when predicting corrosion induced cracking in reinforced concrete structures, since this transport significantly delays the onset of cracking and spalling by reducing the amount radial displacement displacement imposed on the concrete at the steel/concrete interface. We aim to model this process by means of a transport-structural approach, whereby the transport part is driven by a pressure gradient generated by the volumetric expansion due to the transformation of steel into corrosion products. This pressure driven transport was introduced in an analytical axisymmetric thickwalled cylinder model and a numerical network approach. The influence of cracking and permeability on corrosion induced cracking process with increasing inner displacement is investigated with these two approaches

    Nearfield acoustic holography Review and perspectives

    No full text
    Available from British Library Document Supply Centre- DSC:8715.888(ISVR-TR--179) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Optimisation of the structural modes of automotive-type panels using line stiffeners and point masses to achieve weak acoustic radiation

    No full text
    This paper was accepted for publication in the journal, Applied Acoustics [© Elsevier Ltd.] and the definitive version is available at: http://dx.doi.org/10.1016/j.apacoust.2015.01.001In this paper, an optimisation method is presented that turns the structural modes of an automotive-type panel into weak acoustic radiators. The advantage of the proposed method is that the optimum design does not depend upon a specific excitation mechanism. Hence, the optimised panel can be used in the early stages of vehicle product design when specific knowledge about the excitation forces is not available. In the proposed method the boundary conditions of the panel are specified such that the panel can be considered in isolation from the rest of the structure. The optimisation of the structural modes of the panel is then achieved by placing a number of constraint masses and stiffeners of optimum size and weight at optimum locations on the plate. Firstly, a theoretical model of a simply-supported plate is developed that takes into account the constraints at arbitrary positions and orientations. Then a genetic algorithm is used to minimise the sound power radiated by different modes on the plate by finding the optimum design for the constraints. Secondly, the use of added masses and stiffeners is then applied to a floor panel of a simplified model of a vehicle body structure in order to reduce the radiated sound. Predicted and experimental results of the radiated sound power from a reference flat panel and from various optimised panel designs are presented to illustrate the effectiveness of the optimised designs in reducing radiated sound from the structure. A combination of masses and stiffeners is shown to be an effective way of constructing weakly radiating structural modes on the panel

    Immune Modulation to Improve Tissue Engineering Outcomes for Cartilage Repair in the Osteoarthritic Joint

    No full text
    Osteoarthritis (OA), the most common form of arthritis, is a disabling degenerative joint disease affecting synovial joints and is associated with cartilage destruction, inflammation of the synovial membrane, and subchondral bone remodeling. Inflammation of the synovial membrane may arise secondary to degenerative processes in articular cartilage (AC), or may be a primary occurrence in OA pathogenesis. However, synovial inflammation plays a key role in the pathogenesis and disease progression of OA through the production of pro-inflammatory mediators, and is associated with cartilage destruction and pain. The triggers that initiate activation of the immune response in OA are unknown, but crosstalk between osteoarthritic chondrocytes, cartilage degradation products, and the synovium may act to perpetuate this response. Increasing evidence has emerged highlighting an important role for pro-inflammatory mediators and infiltrating inflammatory cell populations in the progression of the disease. Tissue engineering strategies hold great potential for the repair of damaged AC in an osteoarthritic joint. However, an in-depth understanding of how OA-associated inflammation impacts chondrocyte and progenitor cell behavior is required to achieve efficient cartilage regeneration in a catabolic osteoarthritic environment. In this review, we will discuss the role of inflammation in OA, and investigate novel immune modulation strategies that may prevent disease progression and facilitate successful cartilage regeneration for the treatment of OA
    corecore