21 research outputs found

    Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5

    Get PDF
    The element distribution in the crystal structure of the stable phase of the well-known phase-change material Ge2Sb2Te5 was determined at temperatures up to 471 degrees C using single crystals synthesized by chemical transport reactions. Because of the similar electron count of Sb and Te, the scattering contrast was enhanced by resonant diffraction using synchrotron radiation (beamline ID11, ESRF). A simultaneous refinement on data measured at the K-absorption edges of Sb and Te as well as at additional wavelengths off the absorption edges yielded reliable occupancy factors of each element on each position (a = 4.2257(2) angstrom, c = 17.2809(18) angstrom, P (3) over bar m1, R-1 (overall) = 0.037). The dispersion correction terms Delta f' were refined and match experimental ones obtained from fluorescence spectra by the Kramers-Kronig transform. The structure contains distorted rocksalt-type blocks of nine alternating cation and anion layers, respectively, which are separated by van der Waals gaps between Te atom layers. Ge atoms prefer the cation positions near the center of the rocksalt-type block (occupancy factors Ge0.60(4)Sb0.36(2)), Sb atoms the one near the van der Waals gap (Ge0.33(7)Sb0.66(4)). Anti-site disorder is not significant. During heating up to 471 degrees C and subsequent cooling, a reversible structural distortion was observed. The refinements show that with increasing temperature the first pair of anion and cation layers next to the van der Waals gap becomes slightly detached from the block and increasingly resembles a GeTe-type layer. Thus, the difference between interatomic distances in the 3 + 3 cation coordination sphere of the mixed Ge-Sb position next to the gap becomes more pronounced. The element distribution, in contrast, neither changes during the heating experiment nor upon long-time annealing. Thus, the behavior of 9P-Ge2Sb2Te5 single crystals is predominantly under thermodynamic control

    Heterostructures of skutterudites and germanium antimony tellurides – structure analysis and thermoelectric properties of bulk samples

    Get PDF
    Heterostructures of germanium antimony tellurides with skutterudite-type precipitates are promising thermoelectric materials due to low thermal conductivity and multiple ways of tuning their electronic transport properties. Materials with the nominal composition [CoSb2(GeTe)_(0.5)]_x(GeTe)_(10.5)Sb_2Te_3 (x = 0–2) contain nano- to microscale precipitates of skutterudite-type phases which are homogeneously distributed. Powder X-ray diffraction reveals that phase transitions of the germanium antimony telluride matrix depend on its GeTe content. These are typical for this class of materials; however, the phase transition temperatures are influenced by heterostructuring in a beneficial way, yielding a larger existence range of the intrinsically nanostructured pseudocubic structure of the matrix. Using microfocused synchrotron radiation in combination with crystallite pre-selection by means of electron microscopy, single crystals of the matrix as well as of the precipitates were examined. They show nano-domain twinning of the telluride matrix and a pronounced structure distortion in the precipitates caused by GeTe substitution. Thermoelectric figures of merit of 1.4 ± 0.3 at 450 °C are observed. In certain temperature ranges, heterostructuring involves an improvement of up to 30% compared to the homogeneous material

    Layered germanium tin antimony tellurides: element distribution, nanostructures and thermoelectric properties

    Get PDF
    In the system Ge-Sn-Sb-Te, there is a complete solid solution series between GeSb2Te4 and SnSb2Te4. As Sn2Sb2Te5 does not exist, Sn can only partially replace Ge in Ge2Sb2Te5; samples with 75% or more Sn are not homogeneous. The joint refinement of high-resolution synchrotron data measured at the K-absorption edges of Sn, Sb and Te combined with data measured at off-edge wavelengths unambiguously yields the element distribution in 21R-Ge0.6Sn0.4Sb2Te4 and 9P-Ge1.3Sn0.7Sb2Te5. In both cases, Sb predominantly concentrates on the position near the van der Waals gaps between distorted rocksalt-type slabs whereas Ge prefers the position in the middle of the slabs. No significant antisite disorder is present. Comparable trends can be found in related compounds; they are due to the single-side coordination of the Te atoms at the van der Waals gap, which can be compensated more effectively by Sb3+ due to its higher charge in comparison to Ge2+. The structure model of 21R-Ge0.6Sn0.4Sb2Te4 was confirmed by high-resolution electron microscopy and electron diffraction. In contrast, electron diffraction patterns of 9P-Ge1.3Sn0.7Sb2Te5 reveal a significant extent of stacking disorder as evidenced by diffuse streaks along the stacking direction. The Seebeck coefficient is unaffected by the Sn substitution but the thermal conductivity drops by a factor of 2 which results in a thermoelectric figure of merit ZT = similar to 0.25 at 450 degrees C for both Ge0.6Sn0.4Sb2Te4 and Ge1.3Sn0.7Sb2Te5, which is higher than similar to 0.20 for unsubstituted stable layered Ge-Sb-Te compounds

    Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5

    Get PDF
    The element distribution in the crystal structure of the stable phase of the well-known phase-change material Ge2Sb2Te5 was determined at temperatures up to 471 degrees C using single crystals synthesized by chemical transport reactions. Because of the similar electron count of Sb and Te, the scattering contrast was enhanced by resonant diffraction using synchrotron radiation (beamline ID11, ESRF). A simultaneous refinement on data measured at the K-absorption edges of Sb and Te as well as at additional wavelengths off the absorption edges yielded reliable occupancy factors of each element on each position (a = 4.2257(2) angstrom, c = 17.2809(18) angstrom, P (3) over bar m1, R-1 (overall) = 0.037). The dispersion correction terms Delta f' were refined and match experimental ones obtained from fluorescence spectra by the Kramers-Kronig transform. The structure contains distorted rocksalt-type blocks of nine alternating cation and anion layers, respectively, which are separated by van der Waals gaps between Te atom layers. Ge atoms prefer the cation positions near the center of the rocksalt-type block (occupancy factors Ge0.60(4)Sb0.36(2)), Sb atoms the one near the van der Waals gap (Ge0.33(7)Sb0.66(4)). Anti-site disorder is not significant. During heating up to 471 degrees C and subsequent cooling, a reversible structural distortion was observed. The refinements show that with increasing temperature the first pair of anion and cation layers next to the van der Waals gap becomes slightly detached from the block and increasingly resembles a GeTe-type layer. Thus, the difference between interatomic distances in the 3 + 3 cation coordination sphere of the mixed Ge-Sb position next to the gap becomes more pronounced. The element distribution, in contrast, neither changes during the heating experiment nor upon long-time annealing. Thus, the behavior of 9P-Ge2Sb2Te5 single crystals is predominantly under thermodynamic control

    Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway

    Get PDF
    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9

    La<sub>6</sub>Ba<sub>3</sub>[Si<sub>17</sub>N<sub>29</sub>O<sub>2</sub>]ClAn Oxonitridosilicate Chloride with Exceptional Structural Motifs

    No full text
    The oxonitridosilicate chloride La<sub>6</sub>Ba<sub>3</sub>[Si<sub>17</sub>N<sub>29</sub>O<sub>2</sub>]Cl was synthesized by a high-temperature reaction in a radiofrequency furnace starting from LaCl<sub>3</sub>, BaH<sub>2</sub>, and the ammonolysis product of Si<sub>2</sub>Cl<sub>6</sub>. Diffraction data of a micrometer-sized single crystal were obtained using microfocused synchrotron radiation at beamline ID11 of the ESRF. EDX measurements on the same crystal confirm the chemical composition. The crystal structure [space group <i>P</i>6<sub>3</sub>/<i>m</i> (no. 176), <i>a</i> = 9.8117(14), <i>c</i> = 19.286(6) Å, <i>Z</i> = 2] contains an unprecedented interrupted three-dimensional network of vertex-sharing SiN<sub>4</sub> and SiN<sub>3</sub>O tetrahedra. The SiN<sub>4</sub> tetrahedra form <i>dreier</i> rings. Twenty of the latter condense in a way that the Si atoms form icosahedra. Each icosahedron is connected to others via six SiN<sub>4</sub> tetrahedra that are part of <i>dreier</i> rings and via six Q<sup>3</sup>-type SiN<sub>3</sub>O tetrahedra. Rietveld refinements confirm that the final product contains only a small amount of impurities. Lattice energy (MAPLE) and bond-valence sum (BVS) calculations show that the structure is electrostatically well balanced. Infrared spectroscopy confirms the absence of N–H bonds

    The α-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signaling and gene expression of Legionella pneumophila

    Full text link
    The causative agent of Legionnaires' disease, Legionella pneumophila, employs the autoinducer compound LAI-1 (3-hydroxypentadecane-4-one) for cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, comprising the autoinducer synthase LqsA, the sensor kinases LqsS and LqsT, as well as the response regulator LqsR. Lqs-regulated processes include pathogen-host interactions, production of extracellular filaments and natural competence for DNA uptake. Here we show that synthetic LAI-1 promotes the motility of L. pneumophila by signaling through LqsS/LqsT and LqsR. Upon addition of LAI-1, autophosphorylation of LqsS/LqsT by [γ-(32) P]-ATP was inhibited in a dose-dependent manner. In contrast, the Vibrio cholerae autoinducer CAI-1 (3-hydroxytridecane-4-one) promoted the phosphorylation of LqsS (but not LqsT). LAI-1 did neither affect the stability of phospho-LqsS or phospho-LqsT, nor the dephosphorylation by LqsR. Transcriptome analysis of L. pneumophila treated with LAI-1 revealed that the compound positively regulates a number of genes, including the non-coding RNAs rsmY and rsmZ, and negatively regulates the RNA-binding global regulator crsA. Accordingly, LAI-1 controls the switch from the replicative to the transmissive growth phase of L. pneumophila. In summary, the findings indicate that LAI-1 regulates motility and the biphasic life style of L. pneumophila through LqsS- and LqsT-dependent phosphorylation signaling

    K<sub>2</sub>Hg<sub>2</sub>Se<sub>3</sub>: Large-Scale Synthesis of a Photoconductor Material Prototype with a Columnar Polyanionic Substructure

    No full text
    K<sub>2</sub>Hg<sub>2</sub>Se<sub>3</sub>, a new photoconducting material with a direct band gap around 1.4 eV, was obtained in nearly quantitative yields and large scale (50 g per batch) by means of solvothermal treatment of a corresponding solid. The compound comprises covalently linked selenidomercurate columns that accommodate potassium counterions. Composition and structure allow for a specific combination of optoelectronic, photophysical, and thermoelectric properties, which initiates a systematic material development within this family of compounds

    LAI-1-dependent inhibition of cell migration requires the Cdc42 GEF ARHGEF9.

    No full text
    <p>(A) Confluent cell layers of A549 cells were treated for 2 days with siRNA against the different Cdc42 GEFs or GAPs indicated. The cells were then treated or not with LAI-1 (10 ÎŒM, 1.5 h), scratched and let migrate for 24 h. Prior to imaging (0, 24 h), the detached cells were washed off. (B) The scratch area was quantified at 6 different positions per condition using ImageJ software. Means and standard deviations of 3 samples are shown, which are representative of 3 independent experiments (***<i>p</i> < 0.001).</p
    corecore