34 research outputs found

    Techno-economic comparative analysis of renewable energy systems: Case study in Zimbabwe

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Fluctuations in fossil fuel prices significantly affect the economies of countries, especially oil-importing countries, hence these countries are thoroughly investigating the increase in the utilization of renewable energy resources as it is abundant and locally available in all the countries despite challenges. Renewable energy systems (RES) such as solar and wind systems offer suitable alternatives for fossil fuels and could ensure the energy security of countries in a feasible way. Zimbabwe is one of the African countries that import a significant portion of its energy needs which endanger the energy security of the country. Several studies in the literature discussed the feasibility of different standalone and hybrid RES either with or without energy storage systems to either maximize the technical feasibility or the economic feasibility; however, none of the studies considered maximizing both feasibilities at the same time. Therefore, we present a techno-economic comparison of standalone wind and solar photovoltaic (PV) in addition to hybrid PV/wind systems based on maximizing the RES fraction with levelized cost of electricity (LCOE) being less than or equal to the local grid tariff where Gwanda, Zimbabwe, is the case study. The methodology suggested in this study could increase the utilization of renewable energy resources feasibly and at the same time increase the energy security of the country by decreasing dependency on imported energy. The results indicate that the PV/wind hybrid system does not only have the best economic benefits represented by the net present value (NPV) and the payback period (PBP), but also the best technical performance; where the maximum feasible size of the hybrid system-2 MW wind and 1 MW PV-has RES fraction of 65.07%, LCOE of 0.1 USD/kWh, PBP of 3.94 years, internal rate of return of 14.04% and NPV of 3.06 × 106 USD. Having similar systems for different cities in Zimbabwe will decrease the energy bill significantly and contribute toward the energy security of the country

    Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe

    Get PDF
    Fluctuations in fossil fuel prices significantly affect the economies of countries, especially oil-importing countries, hence these countries are thoroughly investigating the increase in the utilization of renewable energy resources as it is abundant and locally available in all the countries despite challenges. Renewable energy systems (RES) such as solar and wind systems offer suitable alternatives for fossil fuels and could ensure the energy security of countries in a feasible way. Zimbabwe is one of the African countries that import a significant portion of its energy needs which endanger the energy security of the country. Several studies in the literature discussed the feasibility of different standalone and hybrid RES either with or without energy storage systems to either maximize the technical feasibility or the economic feasibility; however, none of the studies considered maximizing both feasibilities at the same time. Therefore, we present a techno-economic comparison of standalone wind and solar photovoltaic (PV) in addition to hybrid PV/wind systems based on maximizing the RES fraction with levelized cost of electricity (LCOE) being less than or equal to the local grid tariff where Gwanda, Zimbabwe, is the case study. The methodology suggested in this study could increase the utilization of renewable energy resources feasibly and at the same time increase the energy security of the country by decreasing dependency on imported energy. The results indicate that the PV/wind hybrid system does not only have the best economic benefits represented by the net present value (NPV) and the payback period (PBP), but also the best technical performance; where the maximum feasible size of the hybrid system-2 MW wind and 1 MW PV-has RES fraction of 65.07%, LCOE of 0.1 USD/kWh, PBP of 3.94 years, internal rate of return of 14.04% and NPV of 3.06 × 106 USD. Having similar systems for different cities in Zimbabwe will decrease the energy bill significantly and contribute toward the energy security of the country

    Optimal allocation and sizing of decentralized solar photovoltaic generators using unit financial impact indicator

    Get PDF
    A novel financial metric denominated unit financial impact indicator (UFII) is proposed to minimize the payback period for solar photovoltaic (PV) systems investments and quantify the financial efficiency of allocation and sizing strategies. However, uncontrollable environmental conditions and operational uncertainties, such as variable power demands, component failures, and weather conditions, can threaten the robustness of the investment, and their effect needs to be accounted for. Therefore, a new probabilistic framework is proposed for the robust and optimal positioning and sizing of utility-scale PV systems in a transmission network. The probabilistic framework includes a new cloud intensity simulator to model solar photovoltaic power production based on historical data and quantified using an efficient Monte Carlo method. The optimized solution obtained using weighted sums of expected UFII and its variance is compared against those obtained by using well-established economic metrics from literature. The efficiency and usefulness of the proposed approach are tested on the 14-bus IEEE power grid case study. The results prove the applicability and efficacy of the new probabilistic metric to quantify the financial effectiveness of solar photovoltaic investments on different nodes and geographical regions in a power grid, considering the unavoidable conditional and operational uncertainty

    Energy Policy Decision in the Light of Energy Consumption Forecast by 2030 in Zimbabwe

    Get PDF
    Sustainable energy, environmental protection, and global warming are the most discussed topics in today’s world. Demand forecasting is paramount for the design of energy generation systems to meet the increasing energy demand. In this chapter, an examination of the causal nexus between energy consumption, total population, greenhouse gas emissions, and per capita GDP was carried out to forecast Zimbabwe’s energy consumption by 2030. A time series data from 1980 to 2012 were employed alongside econometric techniques to explore the causal relationship among the variables under review. The stationary test revealed the integration of all the data series of interest of order one ∼ I(1). The autoregressive integrated moving average (ARIMA) model forecasted Zimbabwe’s 2030 energy demand around 0.183 quadrillion Btu as against the current 0.174 quadrillion Btu. The empirical finding is indicative for policy- and decision makers who design the energy policy framework geared towards achieving the universal access to modern energy technologies in Zimbabwe

    100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan

    Get PDF
    Many developing countries suffer from high energy-import dependency and inadequate electrification of rural areas, which aggravates the poverty problem. In this work, Al-Tafilah in Jordan was considered as a case study, where the technical, economic, and environmental benefits of a decentralized hybrid renewable energy system that can match 100% of the city demand were investigated. A tri-hybrid system of wind, solar, and hydropower was integrated with an energy storage system and optimized to maximize the match between the energy demand and production profiles. The optimization aimed at maximizing the renewable energy system (RES) fraction while keeping the levelized cost of electricity (LCOE) equal to the electricity purchase tariff. The techno-economic analysis showed that the optimal system in Al-Tafilah comprises a 28 MW wind system, 75.4 MW PV, and 1 MW hydropower, with a 259 MWh energy storage system, for which a RES fraction of 99% can be achieved, and 47,160 MtCO2 are avoided. This study can be easily extended to other rural cities in Jordan, as they have higher renewable energy system (RES) potential. The presented findings are essential not only for Jordan’s planning and economy-boosting but also for contributing to the ongoing force against climate change

    Effect of demand management on regulated and deregulated electricity sectors

    No full text
    Our society derives a quantifiable benefit from electric power. In particular, forced outages or blackouts have enormous consequences on society, one of which is loss of economic surplus. The society relies on having a continuous supply of electrical energy. Some customers may willingly risk this continuous supply and participate in demand management programs for electrical power. If the power system grid is in trouble, electric utilities need to have demand relief. Customers willing to reduce their demand to help the system can receive an incentive fee for helping the utilities. Demand relief can be system wide or location specific. Sometimes it can be more effective to fix the electrical demand vs. supply imbalance from the demand side. The value of demand management contracts is greatly affected by customer location. Inclusion of locational attributes into the contract design procedure increases the effectiveness of the contracts by helping a utility get more value from its demand management programs. Independent System Operators and regulators, among others, can also benefit from effective demand management. This paper will investigate how this type of demand management contracts can help the electricity sector both in regulated and deregulated environments

    An analysis on the potential of solar photovoltaic power

    No full text
    In this present paper, the potential of solar photovoltaic power in Zimbabwe so as to cater for the rising energy demand is assessed. The main objective of this present study is to convert solar resources in 28 different locations scattered all over the country into electrical energy. This investment requires a capital cost of US$18,952,500 and a total land area of 51,020m(2). The 10 MW grid-connected PV potential is feasible for all the chosen locations. Chegutu seems to be the most suitable and profitable site for the construction of the plant and Chiredzi location results in a minimum profit. From an environmental point of view and considering the expected output energy production, investments at Chegutu are highly preferable. The amount of carbon dioxide reduced annually and the cost of electricity are also outlined in this study in which a comparative analysis to the existing grid tariff will be made

    Using utility information to calibrate customer demand management behavior models

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    A soft computing approach to projecting locational marginal price

    No full text
    The increased deregulation of electricity markets in most nations of the world in recent years has made it imperative that electricity utilities design accurate and efficient mechanisms for determining locational marginal price (LMP) in power systems. This paper presents a comparison of two soft computing-based schemes: Artificial neural networks and support vector machines for the projection of LMP. Our system has useful power system parameters as inputs and the LMP as output. Experimental results obtained suggest that although both methods give highly accurate results, support vector machines slightly outperform artificial neural networks and do so with manageable computational time costs

    Designing incentive compatible contracts for effective demand management

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
    corecore