416 research outputs found

    A peptide with N-terminal histidine and C-terminal isoleucine amide (PHI) and vasoactive intestinal peptide (VIP) are copackaged in myenteric neurones of the guinea pig ileum.

    Get PDF
    When cytoplasmic extracts of the myenteric plexus of guinea pig ileum are submitted to centrifugal density gradient separation in a zonal rotor, conditions which separate storage particles containing substance P, somatostatin and VIP from each other, PHI copurifies with VIP. The two immunoreactivities cannot be separated by particle exclusion chromatography, which depends on size rather than density. It is concluded that the posttranslational cleavage of the propeptide or precursor to PHI and VIP occurs after packaging into these storage particles

    Altered Expression Pattern of Clock Genes in a Rat Model of Depression

    Get PDF
    BACKGROUND: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation of clock gene expression in depressive patients, many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats is associated with alternations of the diurnal expression of clock genes. The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes: period genes 1 and 2 (Per1 and Per2) and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at a 4h sampling interval within 24h. We quantified expression of clock genes on brain sections in the prefrontal cortex, nucleus accumbens, pineal gland, suprachiasmatic nucleus, substantia nigra, amygdala, ventral tegmental area, subfields of the hippocampus, and the lateral habenula using in situ hybridization histochemistry. Expression of clock genes in the liver was monitored by real-time quantitative polymerase chain reaction (PCR). RESULTS: We found that the effect of CMS on clock gene expression was selective and region specific. Per1 exhibits a robust diurnal rhythm in most regions of interest, whereas Bmal1 and in particular Per2 were susceptible to CMS. CONCLUSION: The present results suggest that altered expression of investigated clock genes is likely associated with the induction of a depression-like state in the CMS model

    Enzymatic engineering of the porcine genome with transposons and recombinases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs.</p> <p>Results</p> <p>Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- <it>Sleeping Beauty</it>, <it>Tol2</it>, <it>piggyBac</it>, and <it>Passport </it>in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons.</p> <p>Conclusion</p> <p>We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.</p

    VIP and PACAP receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Vasoactive Intestinal Peptide Receptors [64, 65]) are activated by the endogenous peptides VIP, PACAP-38, PACAP-27, peptide histidine isoleucineamide (PHI), peptide histidine methionineamide (PHM) and peptide histidine valine (PHV). VPAC1 and VPAC2 receptors display comparable affinity for the PACAP peptides, PACAP-27 and PACAP-38, and VIP, whereas PACAP-27 and PACAP-38 are >100 fold more potent than VIP as agonists of most isoforms of the PAC1 receptor. However, one splice variant of the human PAC1 receptor has been reported to respond to PACAP-38, PACAP-27 and VIP with comparable affinity [29]. PG 99-465 [115] has been used as a selective VPAC2 receptor antagonist in a number of physiological studies, but has been reported to have significant activity at VPAC1 and PAC1 receptors [35]. The selective PAC1 receptor agonist maxadilan, was extracted from the salivary glands of sand flies (Lutzomyia longipalpis) and has no sequence homology to VIP or the PACAP peptides [116]. Two deletion variants of maxadilan, M65 [180] and Max.d.4 [117] have been reported to be PAC1 receptor antagonists, but these peptides have not been extensively characterised

    VIP and PACAP receptors in GtoPdb v.2023.1

    Get PDF
    Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Vasoactive Intestinal Peptide Receptors [65, 66]) are activated by the endogenous peptides VIP, PACAP-38, PACAP-27, peptide histidine isoleucineamide (PHI), peptide histidine methionineamide (PHM) and peptide histidine valine (PHV). VPAC1 and VPAC2 receptors display comparable affinity for the PACAP peptides, PACAP-27 and PACAP-38, and VIP, whereas PACAP-27 and PACAP-38 are &gt;100 fold more potent than VIP as agonists of most isoforms of the PAC1 receptor. However, one splice variant of the human PAC1 receptor has been reported to respond to PACAP-38, PACAP-27 and VIP with comparable affinity [30]. PG 99-465 [117] has been used as a selective VPAC2 receptor antagonist in a number of physiological studies, but has been reported to have significant activity at VPAC1 and PAC1 receptors [36]. The selective PAC1 receptor agonist maxadilan, was extracted from the salivary glands of sand flies (Lutzomyia longipalpis) and has no sequence homology to VIP or the PACAP peptides [118]. Two deletion variants of maxadilan, M65 [183] and Max.d.4 [119] have been reported to be PAC1 receptor antagonists, but these peptides have not been extensively characterised

    Circadian Behaviour in Neuroglobin Deficient Mice

    Get PDF
    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night

    Effect of Intraduodenal Bile and Na-Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Secretin, Pancreatic Polypeptide, and Gastrin in Man

    Get PDF
    The effect of intraduodenally administered cattle bile (CB) and Na-taurodeoxycholate (TDC) on basal pancreatic secretion and plasma levels of secretin, pancreatic polypeptide (PP), and gastrin were investigated on two separate days in 10 fasting volunteers. Doses of 2-6 g CB and 20&600 mg TDC were given intraduodenally at 65-min intervals. Volume, bicarbonate, lipase, trypsin, amylase, and bilirubin were measured in 10-min fractions of duodenal juice, and GI peptides determined by radioimmunoassay. CB and TDC enhanced significantly and dose-dependently volume, bicarbonate and enzyme secretion, and plasma secretin and PP levels. In contrast, plasma gastrin showed only a marginal increase. We conclude that the hydrokinetic effect of intraduodenal CB and TDC is at least partially mediated by secretin. Gastrin could be ruled out as a mediator of the ecbolic effect, whereas other GI peptides, primarily CCK, and/or neural mechanisms must be considered possible mediators. Both pathways may also play a role in the PP release
    • …
    corecore