128 research outputs found

    The Effect of Liquid Application Times, and Mixer Types with Different Wet Mix Times on Uniformity of Mix

    Get PDF
    Liquid addition systems are often designed to add liquid ingredients with the shortest application time in order to increase the batching capacity and efficiency of the mixing process. The quantity of liquid that is added into the mixer affects batch cycle time, particularly when there is a programmed “wet mix” time, or mixing time after liquid application has completed. Shorter application time of liquids typically produces a larger droplet size, which may lead to greater clumping tendencies in the feed and less uniformity of liquid incorporation. Two experiments were conducted to determine the effect of liquid application time and wet mix time on the uniformity of mix in different mixers. In both experiments, treatments were arranged in a 2 × 3 factorial. Experiment 1 used a double ribbon mixer with 2 liquid application times (20 vs. 30 s) and 3 wet mix times (15, 30, and 45 s). Experiment 2 used a single shaft paddle mixer with 2 liquid addition times (15 vs. 30 s) and 3 wet mix times (15, 30 and 45 s). Ten samples were collected, and coefficient of variation (% CV) determined within those samples. Each treatment had 10 separate replicates. Experiment 1 indicated that wet mix time (P \u3c 0.0001), but not application time (P = 0.653) or the interaction (P = 0.638), impacted % CV in the double ribbon mixer. As wet mix time increased, % CV decreased in a quadratic manner (P = 0.02; 37.2, 18.6, and 10.8% for 15, 30, and 45 s wet mix time, respectively). In Experiment 2, both wet mix time (P = 0.030) and application time (P = 0.001) impacted % CV, but not their interaction (P = 0.290). A longer application time led to a better uniformity of mix (P \u3c 0.05; 13.5 vs. 9.8% CV for 15 vs. 30 s liquid application time), as did a longer wet mix time (P \u3c 0.05; 17.0, 9.8, and 8.2% CV for 10, 20, and 30 s wet mix time, respectively). These results suggest that extending liquid application times may be beneficial in some mixers, and underscore the importance of a sufficient wet mix time to maximize the uniformity of liquid incorporation

    Effect of Sample Preparation and Extended Mix Times with Different Salt Particle Sizes on the Uniformity of Mix of a Corn-Soybean Meal Swine Diet

    Get PDF
    The uniformity of a feed mixture is determined from the coefficient of variation (CV) of 10 samples in a single batch of feed. The feed industry standard is a CV of less than 10% using a single source tracer, such as salt, trace minerals, or iron filings. The objectives of these experiments were to determine the effects of 1) extended mix time, 2) particle size of the marker, and 3) sample preparation on the CV in a corn-soybean meal swine diet. In Experiment 1, treatments were arranged in a 3 × 7 factorial with main effects of 3 salt particle sizes (fine-350 ÎŒm, medium-464 ÎŒm, and coarse-728 ÎŒm) and 7 mix times (2, 3, 5, 15, 30, 45, and 60 min). In Experiment 2, treatments were arranged in 2 × 3 × 3 factorial with 2 sample preparations (unground vs. ground), 3 salt particle sizes (fine-350 ÎŒm, medium-464 ÎŒm, and coarse-728 ÎŒm) and 3 mix times (3, 30, and 60 min). There were 3 replicates per treatment and 10 samples per replicate. Salt concentrations were determined using a QuantabÂź Chloride Titrator. The result of Experiment 1 indicated no interaction between mix time and salt particle size. The extended mix time did not result in segregation (P = 0.307). Particle size of the salt significantly affected the uniformity of mix (P \u3c 0.0001; 21.2, 8.6, and 7.9% CV for the coarse, medium, and fine salt, respectively). The results of Experiment 2 indicated no interaction of sample preparation, salt particle size, and mix time. However, there was interaction between sample preparation and salt particle size (P = 0.0002). The difference in the CV% between unground and ground samples was significantly greater for the mixture with coarse salt (8.89 %) than the mixture with fine (1.35 %) and medium salt (2.59 %). The ground treatment had a significantly lower CV than the unground treatment (P \u3c 0.0001; 8.7 and 13.0 for ground and unground samples, respectively). The fine and medium salt treatments had significantly lower CV as compared to the coarse salt treatment. (P \u3c 0.0001; 7.4, 7.7, and 17.4 for fine, medium and coarse, respectively). These results indicated that feed did not segregate after mixing for up to 1 h. The greater number of particles per gram of the marker (in this case salt) increased the precision of the analysis, likely due to an increased probability that the marker was present in proportionate quantities in the sample tested. However, when coarse salt is used in the manufacturing process, the samples should be ground prior to analysis

    Effects of mill type (hammer vs roller) and particle size uniformity on growth performance, nutrient digestibility, and stomach morphology in finishing pigs

    Get PDF
    Two experiments were conducted to determine the effects of mill type and particle size uniformity on finishing pigs. In Exp. 1, 120 pigs, with an average initial weight of 105 lb, were fed corn-soybean meal-based diets for 57 d. The corn was milled so that all diets had an average mean particle size of 800 11m (± 20), yet differed in particle size uniformity (Sgw). To obtain the most uniform treatment (1.9 Sgw), corn was milled through a roller mill. The intermediate treatment (2.3 Sgw) was obtained by milling corn through a hammermill. The least uniform treatment (2.7 Sgw) was obtained by blending coarsely and finely ground corn. Growth performance of pigs was not affected by Sgw of the diet. However, digestibilities of DM, N, and GE increased as Sgw was reduced. In Exp. 2, 128 pigs, widl an average initial weight of 150 lb, were fed diets with corn milled to 450 JLm (± 7) in a hammermill or a roller mill. The hammermilled corn had an Sgw of 1.8 and the rollermilled corn had an Sgw of 2.0. The diets were fed in meal or pelleted form. There were no interactions among mill type and diet form. Digestibilities of DM and N were greater for the hammermilled treatments, but no growth performance differences were due to mill type. Pelleting increased ADG 9% and improved efficiency of gain by 5 %. Pelleting also increased the severity of stomach lesions. In conclusion, at 800 and 450 p.m, mill type did not affect growth performance. However, nutrient digestibilities were improved by decreasing variability in particle size, a response that merits further investigation.; Swine Day, Manhattan, KS, November 19, 199

    Sensory cutaneous papillae in the sea lamprey (Petromyzonmarinus L.) : I. Neuroanatomy and physiology

    Full text link
    Molecules present in an animal's environment can indicate the presence of predators,food, or sexual partners and consequently, induce migratory, reproductive, foraging,or escape behaviors. Three sensory systems, the olfactory, gustatory, and solitarychemosensory cell (SCC) systems detect chemical stimuli in vertebrates. While agreat deal of research has focused on the olfactory and gustatory system over theyears, it is only recently that significant attention has been devoted to the SCC sys-tem. The SCCs are microvillous cells that were first discovered on the skin of fish,and later in amphibians, reptiles, and mammals. Lampreys also possess SCCs that areparticularly numerous on cutaneous papillae. However, little is known regarding theirprecise distribution, innervation, and function. Here, we show that sea lampreys(Petromyzon marinus L.) have cutaneous papillae located around the oral disk, nostril,gill pores, and on the dorsal fins and that SCCs are particularly numerous on thesepapillae. Tract-tracing experiments demonstrated that the oral and nasal papillae areinnervated by the trigeminal nerve, the gill pore papillae are innervated by branchialnerves, and the dorsal fin papillae are innervated by spinal nerves. We also character-ized the response profile of gill pore papillae to some chemicals and showed thattrout-derived chemicals, amino acids, and a bile acid produced potent responses.Together with a companion study (Suntres et al., Journal of Comparative Neurology,this issue), our results provide new insights on the function and evolution of the SCCsystem in vertebrates

    Effect of Die Retention Time on Pellet Quality and Phytase Stability of a Corn-Soybean Meal Swine Diet

    Get PDF
    Phytase is a phosphohydrolytic enzyme that releases phosphorus from phytate in animal feed. However, pelleting is a thermal process that can denature phytase. It is hypothesized that there are many factors that can account for phytase denaturing during the pelleting process, such as pellet mill model, die length to diameter ratio (L:D), steam quality, and residence time in conditioner and die. Therefore, the objective of this experiment was to determine the effect of pellet mill model, die thickness, and die retention time on pellet quality and phytase stability. Treatments were arranged as a completely randomized design to determine the effect of die retention time (RT). Diets were pelleted using either a 1012-2 HD California Pellet Mill (CPM) Master Model or a 3016-4 HD CPM Master Model equipped with a 3/16 × 2 in (10.6 L:D), a 3/16 × 1 1/4 in (6.6 L:D) or a 3/16 × 1 3/4 in (9.3 L:D) with 30 sec conditioning retention time at 185°F with designated production rate. These processing conditions were used to create the following RT treatments: 10.6 L:D with 4.3 sec RT, 10.6 L:D with 2.9 sec RT, 9.3 L:D with 1.7 sec RT, 9.3 L:D with 1.1 sec RT, 6.6 L:D with 2.6 sec RT, and 6.6 L:D with 1.6 sec RT. The pellet mills were run 3 separate times to provide 3 replicates for each treatment. There was an overall effect (P \u3c 0.001) of treatment on phytase stability in cooled pellets. When using the 1012 PM, phytase was more stable regardless of die retention time when diets were manufactured using the 6.6 L:D die compared to the 10.6 L:D die (P \u3c 0.05). The hot pellet temperature of 10.6 L:D die was 195–211°F, while 6.6 L:D die was 184–189°F. However, the phytase stability was similar between the feed pelleted with 1012 PM equipped with 6.6 L:D die and the 3016 PM equipped with 9.3 L:D regardless of retention time (P \u3e 0.05). The hot pellet temperature of feed pelleted with the 1012 PM equipped with 6.6 L:D die was 184–189°F, while the feed pelleted with the 3016 die equipped with 9.3 L:D die was 180–183°F. There was also a quadratic decrease in phytase stability as the die L:D increased (P \u3c 0.0001). There- fore, the pellet mill size or die retention time did not affect phytase stability when the hot pellet temperature was less than 189°F. Pellet quality increased (linear; P \u3c 0.0001 for standard pellet durability index (PDI) or quadratic; P \u3c 0.0001 for modified PDI) as die L:D increased. The die L:D had greater effects on both PDI methods than the die retention time. However, increased die retention time improved (P \u3c 0.05) pellet quality when the feed was pelleted with 6.6 L:D, but not when pelleted using the 9.3 or 10.6 L:D. In conclusion, the phytase that was produced by Trichoderma reesei strain could tolerate hot pellet temperatures up to 189°F, regardless of pellet mill model, die thickness, and die retention time. However, phytase stability was dramatically reduced when hot pellet temperatures ranged from 195–211°F. Therefore, hot pellet temperatures should be measured to monitor phytase stability. Increasing the die L:D had the greatest effect on improving pellet quality

    A broadscale analysis of host-symbiont cophylogeny reveals the drivers of phylogenetic congruence

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: A copy of the source data and R code used in this study have been deposited at figshare.com: https://doi.org/10.6084/m9.figshare.14393309 This article has earned Open Data and Open Materials badges. Data and materials are available at: https://figshare.com/articles/dataset/Dataset_for_ELE_EV_ELE13757/14393309?file=27503576 and https://figshare.com/articles/dataset/Dataset_for_ELE_EV_ELE13757/14393309?file=27503579Symbioses exert substantial biological influence, with great evolutionary and ecological relevance for disease, major evolutionary transitions, and the structure and function of ecological communities. Yet, much remains unknown about the patterns and processes that characterise symbioses. A major unanswered question is the extent to which symbiont phylogenies mirror those of their hosts and if patterns differ for parasites and mutualists. Addressing this question offers fundamental insights into evolutionary processes, such as whether symbionts typically codiverge with their hosts or if diversity is generated via host switches. Here, we perform a meta-analysis of host-symbiont phylogenetic congruence, encompassing 212 host-symbiont cophylogenetic studies that include ~10,000 species. Our analysis supersedes previous qualitative assessments by utilising a quantitative framework. We show that symbiont phylogeny broadly reflects host phylogeny across biodiversity and life-history, demonstrating a general pattern of phylogenetic congruence in host-symbiont interactions. We reveal two key aspects of symbiont life-history that promote closer ties between hosts and symbionts: vertical transmission and mutualism. Mode of symbiosis and mode of transmission are intimately interlinked, but vertical transmission is the dominant factor. Given the pervasiveness of symbioses, these findings provide important insights into the processes responsible for generating and maintaining the Earth's rich biodiversity.Kungliga Fysiografiska SĂ€llskapet i LundAustralian Research Council (ARC

    Codivergence of Mycoviruses with Their Hosts

    Get PDF
    BACKGROUND: The associations between pathogens and their hosts are complex and can result from any combination of evolutionary events such as codivergence, switching, and duplication of the pathogen. Mycoviruses are RNA viruses which infect fungi and for which natural vectors are so far unknown. Thus, lateral transfer might be improbable and codivergence their dominant mode of evolution. Accordingly, mycoviruses are a suitable target for statistical tests of virus-host codivergence, but inference of mycovirus phylogenies might be difficult because of low sequence similarity even within families. METHODOLOGY: We analyzed here the evolutionary dynamics of all mycovirus families by comparing virus and host phylogenies. Additionally, we assessed the sensitivity of the co-phylogenetic tests to the settings for inferring virus trees from their genome sequences and approximate, taxonomy-based host trees. CONCLUSIONS: While sequence alignment filtering modes affected branch support, the overall results of the co-phylogenetic tests were significantly influenced only by the number of viruses sampled per family. The trees of the two largest families, Partitiviridae and Totiviridae, were significantly more similar to those of their hosts than expected by chance, and most individual host-virus links had a significant positive impact on the global fit, indicating that codivergence is the dominant mode of virus diversification. However, in this regard mycoviruses did not differ from closely related viruses sampled from non-fungus hosts. The remaining virus families were either dominated by other evolutionary modes or lacked an apparent overall pattern. As this negative result might be caused by insufficient taxon sampling, the most parsimonious hypothesis still is that host-parasite evolution is basically the same in all mycovirus families. This is the first study of mycovirus-host codivergence, and the results shed light not only on how mycovirus biology affects their co-phylogenetic relationships, but also on their presumable host range itself

    Die Anopluren der Procaviidae

    No full text
    • 

    corecore