108 research outputs found

    Life testing of metal-ceramic CO2 lasers

    Get PDF
    The main purpose of this program was to determine the life characteristics of nine space-qualified, metal-ceramic CO2 lasers. Lifetimes ranged between about 400 hours to over 2000 hours (the limit of testing) with a high degree of consistency in like groups. In all cases the tubes which had failed could be restored to near their original power by doubling the cathode current for 30 minutes. Periodic rejuvenation allowed operation for the full 2000 hours on all tubes. The failure mechanism appears to involve formation of NiO and C on the nickel cathode emission surface with subsequent absorption of tube gases

    Health problems and help-seeking in a nationwide sample of operational Norwegian ambulance personnel

    Get PDF
    Background To estimate the prevalence of anxiety and depression symptoms, and their association with professional help-seeking, among operational ambulance personnel and a general working population, and to study the symptoms of musculoskeletal pain and disturbed sleep among ambulance personnel. Methods The results of a comprehensive nationwide questionnaire survey of operational ambulance personnel (n = 1180) were compared with the findings of a population-based Norwegian health study of working people (n = 31,987). The questionnaire included measures of help-seeking, the Hospital Anxiety and Depression Scale, the Subjective Health Complaints Questionnaire, the Karolinska Sleep Questionnaire and the Need for Recovery after Work Scale. Results Compared with those in the reference population, the mean of level anxiety symptoms in the ambulance sample was lower for men (3.5 vs. 3.9, P < 0.001) and women (4.0 vs. 4.4, P < 0.05), and the mean level of depression symptoms in ambulance workers was lower for men (2.3 vs. 2.8, P < 0.05) but not for women (2.9 vs. 3.1, P = 0.22). A model adjusted for anxiety and depression symptoms indicated that ambulance personnel had lower levels of help-seeking except for seeing a chiropractor (12% vs. 5%, P < 0.01). In the ambulance sample, symptoms of musculoskeletal pain were most consistently associated with help-seeking. In the adjusted model, only symptoms of disturbed sleep were associated with help-seeking from a psychologist/psychiatrist (total sample = 2.3%). Help-seeking was more often reported by women but was largely unaffected by age. Conclusion The assumption that ambulance personnel have more anxiety and depression symptoms than the general working population was not supported. The level of musculoskeletal pain and, accordingly, the level of help-seeking from a chiropractor were higher for ambulance workers. More research should address the physical strains among ambulance personnel

    Repeated post-exercise administration with a mixture of leucine and glucose alters the plasma amino acid profile in Standardbred trotters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The branched chain amino acid leucine is a potent stimulator of insulin secretion. Used in combination with glucose it can increase the insulin response and the post exercise re-synthesis of glycogen in man. Decreased plasma amino acid concentrations have been reported after intravenous or per oral administration of leucine in man as well as after a single per oral dose in horses. In man, a negative correlation between the insulin response and the concentrations of isoleucine, valine and methionine have been shown but results from horses are lacking. This study aims to determine the effect of repeated per oral administration with a mixture of glucose and leucine on the free amino acid profile and the insulin response in horses after glycogen-depleting exercise.</p> <p>Methods</p> <p>In a crossover design, after a glycogen depleting exercise, twelve Standardbred trotters received either repeated oral boluses of glucose, 1 g/kg body weight (BW) at 0, 2 and 4 h with addition of leucine 0.1 g/kg BW at 0 and 4 h (GLU+LEU), or repeated boluses of water at 0, 2 and 4 h (CON). Blood samples for analysis of glucose, insulin and amino acid concentrations were collected prior to exercise and over a 6 h post-exercise period. A mixed model approach was used for the statistical analyses.</p> <p>Results</p> <p>Plasma leucine, isoleucine, valine, tyrosine and phenylalanine concentrations increased after exercise. Post-exercise serum glucose and plasma insulin response were significantly higher in the GLU+LEU treatment compared to the CON treatment. Plasma leucine concentrations increased after supplementation. During the post-exercise period isoleucine, valine and methionine concentrations decreased in both treatments but were significantly lower in the GLU+LEU treatment. There was no correlation between the insulin response and the response in plasma leucine, isoleucine, valine and methionine.</p> <p>Conclusions</p> <p>Repeated post-exercise administration with a mixture of leucine and glucose caused a marked insulin response and altered the plasma amino acid profile in horses in a similar manner as described in man. However, the decreases seen in plasma amino acids in horses seem to be related more to an effect of leucine and not to the insulin response as seen in man.</p

    The Flagellar Regulator fliT Represses Salmonella Pathogenicity Island 1 through flhDC and fliZ

    Get PDF
    Salmonella pathogenicity island 1 (SPI1), comprising a type III section system that translocates effector proteins into host cells, is essential for the enteric pathogen Salmonella to penetrate the intestinal epithelium and subsequently to cause disease. Using random transposon mutagenesis, we found that a Tn10 disruption in the flagellar fliDST operon induced SPI1 expression when the strain was grown under conditions designed to repress SPI1, by mimicking the environment of the large intestine through the use of the intestinal fatty acid butyrate. Our genetic studies showed that only fliT within this operon was required for this effect, and that exogenous over-expression of fliT alone significantly reduced the expression of SPI1 genes, including the invasion regulator hilA and the sipBCDA operon, encoding type III section system effector proteins, and Salmonella invasion of cultured epithelial cells. fliT has been known to inhibit the flagellar machinery through repression of the flagellar master regulator flhDC. We found that the repressive effect of fliT on invasion genes was completely abolished in the absence of flhDC or fliZ, the latter previously shown to induce SPI1, indicating that this regulatory pathway is required for invasion control by fliT. Although this flhDC-fliZ pathway was necessary for fliT to negatively control invasion genes, fliZ was not essential for the repressive effect of fliT on motility, placing fliT high in the regulatory cascade for both invasion and motility

    Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Get PDF
    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways

    Protein Translation and Cell Death: The Role of Rare tRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes

    Get PDF
    We discovered previously that the small Escherichia coli proteins Hha (hemolysin expression modulating protein) and the adjacent, poorly-characterized YbaJ are important for biofilm formation; however, their roles have been nebulous. Biofilms are intricate communities in which cell signaling often converts single cells into primitive tissues. Here we show that Hha decreases biofilm formation dramatically by repressing the transcription of rare codon tRNAs which serves to inhibit fimbriae production and by repressing to some extent transcription of fimbrial genes fimA and ihfA. In vivo binding studies show Hha binds to the rare codon tRNAs argU, ileX, ileY, and proL and to two prophage clusters D1P12 and CP4-57. Real-time PCR corroborated that Hha represses argU and proL, and Hha type I fimbriae repression is abolished by the addition of extra copies of argU, ileY, and proL. The repression of transcription of rare codon tRNAs by Hha also leads to cell lysis and biofilm dispersal due to activation of prophage lytic genes rzpD, yfjZ, appY, and alpA and due to induction of ClpP/ClpX proteases which activate toxins by degrading antitoxins. YbaJ serves to mediate the toxicity of Hha. Hence, we have identified that a single protein (Hha) can control biofilm formation by limiting fimbriae production as well as by controlling cell death. The mechanism used by Hha is the control of translation via the availability of rare codon tRNAs which reduces fimbriae production and activates prophage lytic genes. Therefore, Hha acts as a toxin in conjunction with co-transcribed YbaJ (TomB) that attenuates Hha toxicity

    Disruption of TGF-β Signaling Improves Ocular Surface Epithelial Disease in Experimental Autoimmune Keratoconjunctivitis Sicca

    Get PDF
    TGF-β is a pleiotropic cytokine that can have pro- or anti-inflammatory effects depending on the context. Elevated levels of bioactive TGF-β1 in tears and elevated TGF-β1mRNA transcripts in conjunctiva and minor salivary glands of human Sjögren's Syndrome patients has also been reported. The purpose of this study was to evaluate the response to desiccating stress (DS), an experimental model of dry eye, in dominant-negative TGF-β type II receptor (CD4-DNTGFβRII) mice. These mice have a truncated TGF-β receptor in CD4(+) T cells, rendering them unresponsive to TGF-β.DS was induced by subcutaneous injection of scopolamine and exposure to a drafty low humidity environment in CD4-DNTGFβRII and wild-type (WT) mice, aged 14 weeks, for 5 days. Nonstressed (NS) mice served as controls. Parameters of ocular surface disease included corneal smoothness, corneal barrier function and conjunctival goblet cell density. NS CD4-DNTGFβRII at 14 weeks of age mice exhibited a spontaneous dry eye phenotype; however, DS improved their corneal barrier function and corneal surface irregularity, increased their number of PAS+ GC, and lowered CD4(+) T cell infiltration in conjunctiva. In contrast to WT, CD4-DNTGFβRII mice did not generate a Th-17 and Th-1 response, and they failed to upregulate MMP-9, IL-23, IL-17A, RORγT, IFN-γ and T-bet mRNA transcripts in conjunctiva. RAG1KO recipients of adoptively transferred CD4+T cells isolated from DS5 CD4-DNTGFβRII showed milder dry eye phenotype and less conjunctival inflammation than recipients of WT control.Our results showed that disruption of TGF-β signaling in CD4(+) T cells causes paradoxical improvement of dry eye disease in mice subjected to desiccating stress

    IL-10 from CD4+CD25−Foxp3−CD127− Adaptive Regulatory T Cells Modulates Parasite Clearance and Pathology during Malaria Infection

    Get PDF
    The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-β are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25hi (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25−, Foxp3−, and CD127− and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3− regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Rα, that modulates the inflammatory response to malaria
    corecore