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PREFACE

OBJECTIVE

The objective of this program was to determine the life characteristics

of several metal-ceramic CO2 lasers of a space qualified design built under

strict fabrication and process controls.

SCOPE OF WORK

Nine metal-ceramic tubes of similar designs were constructed. These

tubes were life tested under controlled conditions for a period of 2000 hours

or until failure, which ever occurred first. One tube was shelf-life tested

for 3000 hours. In addition nine all-glass tubes were constructed for a

NASA-conducted life test program. Failure analysis was carried out for

those tubes which had failed during the test program.

CONCLUSIONS

The basic tube design is capable of operation for 400-600 hours

after which rejuvenation is required to maintain power output for periods

of 2000 hours or more. Glass inserts in the metal-ceramic tube do not have

an appreciable effect on life. Increasing the gas storage volume associated

with the tube by a factor of 3 to 500 cc extends the tube life to well beyond

2000 hours without rejuvenation. Formation of NiO and carbon on the nickel

cathode of the tube with subsequent adsorption of tube gases appears to be

the major failure mechanism. No life limitations with storage were observed.

SUMMARY OF RECOMMENDATIONS

1. Preprocessing techniques for a nickel cathode should be

developed.

2. For tube lifetimes of 10,000 hours or more, a new cathode

material should be developed.

3. Studies should be continued on the development of a

controllable CO gas generator to automatically replace

the CO2 lost in chemisorption as the tube is operated.
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SECTION I

INTRODUCTION

In November, 1969 the NASA-Goddard Space Flight Center initiated

a program for the development, fabrication and test of a CO2 laser communica-

tions experiment (LCE) to be flown on the ATS-F satellite. The Aerojet General

Corporation was chosen as the prime contractor for this effort. One of the

objectives of that program was the measurement, through formal and controlled

testing, of the lifetime characteristics of the space qualified tubes de-

veloped for the LCE. Early termination of the program, however, precluded

such testing.

As a natural outgrowth of the LCE program the effort to be reported

here was started in February 1971 and was specifically directed toward ob-

taining knowledge of the life characteristics and hopefully the failure

mechanisms for the tube designs which were being considered for the LCE.

This program is therefore primarily concerned with the fabrication and life-

test of several CO
2
laser tubes of an earlier design already proven capable

of withstanding the environmental requirements of the ATS-F satellite.

As part of the LCE efforts, detailed fabrication and process

controls were developed for the tubes along with specialized jigs used in

fabrication and sub-component testing. These were developed in order to

ensure uniformity in all phases of fabrication, to increase yield and, hope-

fully to provide uniform operating characteristics from tube to tube. Since

these formal controls were utilized with the tubes fabricated on this cur-

rent program, the degree of consistency in life test results from tubes

with the same design parameters will also provide information as to the

adequacy of the controls.

Although the main purpose of this program was the fabrication and

life test of several tubes designed for the LCE, other related activities

were pursued and are reported herein. In addition to the LCE type of tube,

several all-glass tubes of a NASA design were fabricated. Earlier efforts(l)

have indicated that small amounts of water vapor in the laser mix may be
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beneficial to tube life and that the glass used in the tube construction

may be able to provide the quantity of water vapor required. A total of

nine all-glass tubes of a space qualified design were fabricated, processed

and delivered to NASA for life testing.

In addition, since the metal-ceramic type tube may not have the

same water vapor absorption characteristics as glass, and most likely has

a very low affinity towards water vapor, a limited amount of research was

performed on the water vapor storage capability of various types of Zeolite,

an additive which could be placed inside the metal-ceramic CO2 laser tube

envelope. Studies were performed on the adsorption and desorption char-

acteristics of Zeolite as a function of temperature, partial pressures of

gases and of the quantity of Zeolite required with respect to the total

tube volume. Nickel carbonate was also studied briefly as a possible solid

state source of CO2.

A task unrelated to tube life was also performed on the program

and is reported in a later section. It involved the completion of fab-

rication and testing of an electronic control box designed under the earlier

LCE program to automatically control the laser frequency by a "dither"

control technique. This automatic frequency control unit is planned for

use on NASA in-house CO2 laser efforts.

The remainder of this report is organized into three major technical

subsections covering the metal-ceramic tube efforts, the glass tube efforts

and the AFC electronics efforts in Section 2, 3, and 4 respectively. Con-

clusions and recommendations are covered in Section 5 with new technology

and references contained in Sections 6 and 7.
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SECTION 2

METAL-CERAMIC CO2 LASER EFFORTS

This section will cover the efforts applied to the metal-ceramic

tubes. The design of the standard tube will be briefly reviewed after

which more detailed discussions on the life test procedures, results and

analysis will be covered.

2.1 TUBE DESIGN SUMMARY

Figure 1 shows a cross-sectional view of the basic metal-ceramic

laser tube built on the current program. Figure 2 is a photograph of a

completed tube in its mating heat-sink. This tube was first designed by

GTE Sylvania for the NASA - Electronics Research Center on Contract NAS12-2021

entitled Space Qualified CO
2
Laser. The tube was developed further under a

contract with the Aerojet-General Corporation for the NASA-Goddard Space

Flight Center Laser Communications Experiment.

The laser tube design is based on the following set of major

parameters:

a. The tube must be of sufficient length to provide enough

gain for 1W minimum output power at the maximum environ-

mental temperature.

b. The tube must operate with conduction cooling.

c. The tube must operate with a heated cathode (for long

life).

d. The tube must provide TEM00 power only.

e. The output beam must be polarized.

f. The tube must have a long operating life.

g. The tube must be bakeable.

h. The tube must be rugged to withstand environmental

conditions.

i. The tube should have as high an operating efficiency

as possible.

3.



Figure 1 Ceramic laser tube assembly
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A few of the more salient features of the design are listed

below.

a. The tube has circular geometry with a 4.25 mm diameter

bore made of beryllium oxide. Four 1/4 inch thick BeO

fins are located along the tube bore. BeO is used because

of its very high coefficient of thermal conductivity,

making the heat transfer characteristics of the tube ex-

ceptional.

b. The outside shell, made of thin-walled nickel-plated

Kovar, serves as a rigidizing structure as well as the

vacuum envelope. The spaces between the BeO fins provide

a ballast volume of approximately 150 cc.

c. The tubes are of modular design so that flexibility and

variety in construction is possible in order to obtain

slightly different operating parameters. Each tube con-

sists of six main subassemblies; two Brewster window

assemblies, two tube-end assemblies, a cathode assembly,

and a center section. The fabrication of each sub-

assembly is strictly controlled by a process specification.

Figure 3 is a photograph of the subassemblies.

d. For maximum tube efficiency, the laser utilizes a coaxial

electrode structure rather than electrodes in side arms.

The kovar pieces at each end of the laser tube serve as

anodes while the nickel cylinder (platinum plated on out-

side surface) in the center of the tube is the tube cathode.

The cathode is heated to at least 2500 C during operation.

To achieve this without requiring additional external heat,

the cathode has been isolated from the BeO bore by in-

sulating sections of quartz glass. To provide the electrical

connection to the cathode, as well as additional support,

three thin wires of platinum run between the cathode and

the outside surfaces of the tube. One of the platinum wires

contains rhodium which forms a thermocouple junction at the

cathode allowing the cathode temperature to be monitored.

The wires are terminated on an insulating ceramic feed-

through so that the cathode may be operated somewhat above

ground potential if required. The advantages of a two anode,
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single cathode approach over a single cathide, single

anode approach are:

1. Sputtered material from the cathode is kept farther

from the laser windows

2. Total tube voltage is approximately halved

3. Greater power is dissipated at the cathode,

since twice the current is being drawn, enabling

the cathode to be self-heating.

e. The gallium arsenide Brewster windows are attached to the

end Kovar assemblies using hard soldering techniques,

allowing rugged ultra-high-vacuum seals to be obtained.

The window assemblies (which are prepared independent

of the tube) are then oriented and heliarc-welded to the

tube at the appropriate point in the tube fabrication

cycle. Each window assembly is tested prior to installa-

tion on the tube in a laser test fixture capable of detecting

window losses as low as 0.1 percent.

2.2 DESCRIPTION OF LIFE TEST TUBES

2.2.1 Introduction

Prior to the fabrication of nine metal-ceramic life test tubes,

a precursor tube was assembled using tube ends and a center section which

had been used previously. The purpose of this tube was to aid in finaliz-

ing the process specifications which had not yet been completed. The tube

was also life tested to gain some assurance that the process controls were

adequate. Subsequently, the nine life test tubes were built, incorporating

five design variables into the fabrication and processing of the tubes.

Other than these variations, the tubes were made identically,

according to the same process specifications. Three tube types were con-

structed in order to investigate the five variables, a standard tube, a

standard tube with a glass insert, and a standard tube with an extra gas

ballast. Table 1 lists the nine tubes built, their designation, and the

design variable. Each tube was fixed in an aluminum mount which was
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TABLE I

Metal-Ceramic Life Test Tubes Designation and Description

Designation

MIC-STD-5

MC-STD-6

MC-STD-7

MC-STD-8

MC-GI-1

MC-GI-2

MC-GI-3

MC-B-1

MC-B-2

Description

Standard tube

Same as 1

Same as 1 except shelf-life test only

Contained 50% extra CO2

Contained 90 cm2 pyrex glass insert

Same as 5

Same as 5

Contained 350 cc additional ballast.
Cathode current = 12 ma

Same as 8 except cathode current = 9 ma

assigned to the tube parts during fabrication. The aluminum mount serves

as an assembly jig during fabrication, and as a sink for removal of heat from

the tubes during operation. In addition, each tube has a small glass break-

seal which provides a means of sampling the gas after failure.

The following sections will deal with some of the details of the

different life test variables.

2.2.2 Precursor Tube

As stated previously, the precursor tube served as a check of

several newly developed processes and techniques which were originated on

other programs. It was a standard tube of the type described generally in

Section 2.1.
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All of the fabrication controls were firmly developed prior to

assembly of the precursor tube, except for the final gas processing pro-

cedure. This tube served as the vehicle for the completion of the proces-

sing specification.

The tube was then life-tested to determine if there were any

major problems affecting tube-life which could be corrected before the be-

ginning of the life tests on the nine formal life test tubes.

2.2.3 Standard Tubes

MC-STD-5, 6, and 7 were standard tubes of the type shown earlier

in Figure 2. They were fabricated exactly according to the process specifica-

tions, except for two instances where equipment malfunctions resulted in

poor heliarc welds. These welds had to be removed and redone. To protect

against the case where variances on the fabrication procedures might lead

to a compromise in the goals of the program, an internal material review

board was convened whenever fabrication or processing required deviation

from the process specifications. A fabrication log was kept for each tube

where tube fabrication details were recorded.

MC-STD-7 was shelf life tested to determine if gas permeation

through the tube envelope,contamination, or chemical effects were of sig-

nificant magnitude to be detrimental to tube life through extended storage

periods. After an initial break-in period of 170 hours it was operated

for only four hours per week for the duration of its test. MC-STD-5 and

MC-STD-6 were operated continuously for the duration of their test (2000

hours).

Extensive parametric studies had been done on an earlier program

on five-component gas mixtures for the metal ceramic tube. During these

studies power output was optimized as a function of gas pressure and mix-

ture. It was found that a gas mixture containing 0.2 Torr H
2
, 0.1 Torr 02,
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7.0 Torr N2, 8.0 Torr C02, and 15.0 Torr He provided a good compromise

between maximum power and maximum efficiency and this mixture became the

standard mix for this program.

2.2.4 Glass Insert Tubes

Since the first metal-ceramic tubes were built, there have been

many questions raised as to whether their materials were compatible with

long life. Glass tubes had been built by Sylvania as well as others which

had demonstrated thousands and even tens of thousands of hours of opera-

tional life-time, yet few, small volume, metal-ceramic tubes had operated

for more than a few hundred hours. Those which had lasted for longer

periods had either large ballast volume, substantial glass surface area

exposed to the gases, or both. Theories had developed connecting the use

of glass in tubes with long life primarily based on the fact that glasses

have a high affinity for water vapor and could provide a source of water

vapor for the laser tube. Small amounts of water-vapor or hydrogen were

believed to be beneficial to tube life because they produce a higher

equilibrium C02 pressure in the tube by reducing the dissociation rate

of CO2 in the discharge.(1)

The glass insert tubes were designed to provide the answer to

the question of whether glass was necessary for long life or not.

The glass inserts were designed so they could be installed in

a standard tube without any modifications, prior to final assembly. Figure

4 shows a cross-sectional view of the glass inserts installed in the center

section of a standard tube. The design consists of two separate pyrex

glass cylinders which are slipped inside the standard center section from

each end. A Kovar spring made from .015 inch sheet is placed between

the cylinders to force them against the tube end assemblies (BeO fins).

The outside diameters of the glass cylinders are accurately ground to

mate with the inside diameter of the Kovar center section. Although this

design was itself not Vibrated we believe that, based on tests conducted

on a similar glass insert, this design is satisfactory for space environ-

ment use. The glass surface area exposed to the gas mixture is approxi-

mately 90 cm.

11.



Figure 4 Glass insert tube detail
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MC-GI-1 and MC-GI-2 were fabricated and processed according to

the process specifications. MC-GI-3 was also fabricated and processed

according to the specifications except that in order to maintain schedule,

two tube ends with very small leaks had to be used. The leaks were sealed

with a high vacuum sealant and the assembly and processing proceeded normal-

ly. The leaks occurred in a particular ceramic-to-ceramic braze joint and

became a recurring problem on some later tubes. The problem and its solu-

tion will be discussed in Section 2.4.7.

All three glass-insert tubes were operated continuously through-

out the duration of their testing.

2.2.5 Ballast Tubes

It had been known for some time that if gas cleanup was prevalent

in a CO2 laser tube, then the life of the tube could be extended by increas-

ing its gas storage volume. The rate at which CO2 disappears from the tube

varies depending on tube materials, tube geometry, cathode design, and many

other factors, making the cleanup rate a very complex function of tube

design. The purpose of the ballast tubes then was to gain insight to the

question of how tube life varies with storage volume. As will be dis-

cussed later, it is not necessarily linear.

Figure 5 shows a photograph of the two ballast tubes, MC-B-1 and

MC-B-2 constructed for life test. The ballast tank is mounted directly

over the top of the tube. It is made of 1.67 inch I.D. Kovar and is ap-

proximately 9.5 inches in length, providing an additional ballast includ-

ing tubulations of 350 cc making the total tube volume about 500 cc. The

tanks are attached to the tubes using aluminum brackets. The final braze

of tube to ballast tank makes the entire structure very rigid. Although

no vibration tests were run on this design, we believe that this design

could be qualified for space use.

The fabrication and processing of MC-B-1 and MC-B-2 went well

except for the continued brazing problem. Because of the vendor's

inability to supply leak tight tube-end assemblies, tube ends originally

13.





brazed for the ATS-LCE were used for MC-B-2. They were leak tight, but

were approximately 0.1 inch shorter than the standard life test tubes.

All other aspects of this tube were the same as the standard tubes. Both

tubes were run continuously during their test. In order to study the

affect of tube current on tube life, MC-B-1 was run at 12 ma total current

and MC-B-2 at 9 ma.

2.2.6 Tube Overfilled with CO2

Based on experience obtained with a metal-ceramic development

tube fabricated on a previous program and early results obtained on NASA's

glass tubes, it was decided that the final tube built on the program should

be filled with additional CO2. The earlier development tubes which had used

extra CO
2
had all lived longer than similar tubes witfi standard mixes.

The standard tube, MC-STD-8, was fabricated and processed accord-

ing to the specifications but was filled with 12 Torr of CO2 rather than

8 Torr as in the standard mix. (See Section 2.2.3.) With 50% additional

CO2 available, the lifetime was expected to be increased for reasons similar

to those favoring additional ballast volume. Because of the increased total

pressure, however, the power output history would not be necessarily similar

to that of a tube with 50% extra volume.

Tests were conducted which showed that 50% more CO2 could be

added without decreasing the power output by more than 20% from the maximum

obtainable using a standard mix.

This tube was operated at 10 ma total current for 110 hours at

which time the current was decreased to 9 ma. It was then run continuously

at that level for the duration of its life test.

2.3 LIFE TEST PROGRAM

2.3.1 Introduction

The purpose of this program was to life test nine metal-ceramic

tubes with controlled design variables, as described in the previous section,

in order to establish their fundamental lifetimes.

15.



In order to be accepted for life test, each tube was required

to demonstrate a minimum power output of 800 mW. The power output meas-

urements were made during processing in a standard processing cavity with

an 11% transmitting output mirror and a 60 cm radius of curvature non-

output mirror. Each tube demonstrated 1.35 watts + 0.1 watts in this cavity,

indicating the consistency in their fabrication. As will be discussed in

the following section, a 4% + 1% transmitting output mirror was used in the

life test cavities which reduced their power output to near 800 mW. Mirror

transmission, mixture, and operating current variations accounted for minor

power output variations at the start of the life test.

The power output, current, operating voltage, and cathode tempera-

ture for each tube were monitored during the life test. As mentioned pre-

viously, different tubes had different operating currents. The standard

operating current was changed during the coarse of the program from 9 ma to

12 ma for reasons which will be discussed in later sections. In addition,

the heat sink temperature was held constant at 19°C + 10C and verified by

periodic monitoring.

The life-test duration for each tube, with the exception of

MC-STD-8, MC-B-1 and MC-B-2 was three months (4 2160 hours), unless prior

failure occurred. Failure was defined as when the tube's power output fell

to 25% of its initial power output in the life test cavity.

Upon failure, the final gas mixture for each tube was to be analyzed

and further analysis conducted as appropriate to determine the failure

mechanism.

The following sections will describe the life-test facility, pro-

cedures, and failure analyses, and present some of the conclusions drawn

from the analysis.

2-.3.2 Life Test Station

Figure 6 is a photograph of the life test station. The station

consists of a power-supply rack, and a water-cooled aluminum baseplate for

the laser tubes mounted in a laminar flow bench. The aluminum base plate

16.





has nine milled flats with locating blocks which align each tube precisely

in the center of each cavity. The optical cavity is formed by a flat

4% + 1% transmitting output mirror, and a 60 cm radius of curvature metal-

dielectric coated non-output mirror mounted on a piezoelectric transducer.

A 4% output transmission was chosen so that the lasers would be somewhat

undercoupled. The baseplate has water cooling lines welded to its under-

side. A traverse rod is provided on which a Coherent Radiation power

meter head can slide and be positioned in front of each laser for power

measurements. The locating blocks and fasteners are designed to hold the

standard tube mount rigidly. Silicone heat sinking compound is used to

insure good thermal contact between the tube mount and the milled flat on

the baseplate.

The power supply for each tube provides 15,000 VDC at 15 ma

maximum. The main power to the supplies was wired through a water-pressure

switch so that in the event of a water cooling failure the tubes would be

turned off.

A Lansing lock-in stabilizer was used as an aid in making con-

sistent power output measurements and in aligning the laser cavity for

peak output power.

The life test station was placed on a laminar flow bench to ensure

a dust free operating environment for the tubes, relieving any requirements

for cleaning the cavity optics for the duration of the life test. Earlier

experience had shown that the cleaning of these optics frequently could de-

grade them and cause increased cavity losses resulting in a power loss not

attributable to fundamental failure mechanisms. In addition dust could be

burned into the optical surfaces causing permanent damage.

The laminar flow bench provided a measured dust count level of

less than 100 particles/ft3 of greater than 1/21 size. This is much lower

than the earlier established number of 10,000 particles/ft3 required to

eliminate the need for periodic cleaning during the time period of this

test.

18.



2.3. 3 Life Test Procedures

In order to obtain uniformity in data taking, a standardized

procedure was established. The tube power, voltage, and cathode tempera-

ture were measured daily for the first two weeks. As an operating trend

was established for each tube, measurements were taken less frequently

depending on the rate of change of tube power. Baseplate temperature was

also monitored.

The standard procedure for taking data is listed below:

1) Block the beam and zero the power meter.

2) Check the tube operating current and reset if necessary.

3) Dither the non-output mirror using the fast sweep of

transducer control.

4) Remove block and while dithering adjust front mirror

for maximum power.

5) Turn off sweep and manually scan mirror through its

entire range (15 microns).

6) Record maximum power observed.

7) Measure tube voltages between both anodes and ground.

8) Measure and record baseplate temperature.

9) Measure and record cathode thermocouple voltage and

convert to temperature.

10) Record elapsed hours shown on meter.

The same calibrated test equipment was used throughout the program.

Several tubes fell below their 25% power level prior to the end

of the 2000 hour test period. As part of the failure analysis a tube

"rejuvenation" process was performed on these tubes. The rejuvenation

procedure consisted of increasing the tube current to approximately 15 ma

until the cathode temperature was over 4000 C. The tube current was left

at this high value until 1) the power output began to rise, and 2) the

cathode temperature reached a maximum, began to fall slowly, and leveled

off at some lower temperature. The rejuvenation process usually took be-

tween 10 and 20 minutes and in every case the tube's initial power output
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could be restored. Tube voltage, and cathode temperature were recorded

during the rejuvenation cycles.

The compiled data was kept in a running log and plotted in graphical

form.

2.3.4 Life Test Results

Figures 7 through 16 show the data compiled on the precursor and

nine life-test tubes. For the most part, they are self explanatory; however,

a few points will be briefly discussed.

Table 2 is a summary of the life times determined for the nine

tubes on the program. The lifetimes given are those technically defined

for the program. However, it should be noted that useful power output was

obtained from all the tubes for 2000 hours by the rejuvenation process used.

TABLE 2

LIST OF OPERATING HOURS TO FAILURE FOR METAL-CERAMIC LIFE TEST TUBES

(50% CO
2
overfill)

Time to 25% power level
(hours)

460

720

> 3000 (shelf-life)

805

410

460

475

> 2000

> 2000

The spikes in the cathode temperature curve represent a rejuvena-

tion cycle. Some tubes required rejuvenating less frequently than others.

With each rejuvenation there is a corresponding increase in power output.

MC-STD-5, MC-GI-2, and MC-GI-3 required rejuvenating far more often than

MC-STD-6 and MC-GI-1. The ballast tubes MC-B-1 and MC-B-2 never required
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MC-STD-6

MC-STD-7

MC-STD-8

MC-GI-1

MC-GI-2

MC-GI-3
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rejuvenation. After the first few attempts at rejuvenating MC-STD-5 and

MC-STD-6 it was decided to increase the cathode temperature by increasing

the tube current on all tubes that had technically failed, to determine if

the elevated cathode temperature would lengthen the time span between re-

juvenation cycles. Examination of the graphs indicates it was helpful in

some instances and not in others.

MC-STD-7, the shelf-life tube, showed only minor power variations

during its 3000 hour test. There is a definite correlation between power

output and cathode temperature for this tube. However, this is probably

due to small variations in operating current. The tube was operated for

170 hours initially and then once a week for 4 hours thereafter. It had

a final total of 3000 shelf-life hours and 255 operating hours.

Four out of five of the other standard and glass insert tubes

fell below their 25% power point between 400 and 500 hours. For some

reason not attributable to any known fabrication or processing differences,

MC-STD-6 went for 720 hours. Except for this one variance, all of the like

tubes failed in a time very close to each other providing credibility to

the fabrication and process controls.

The ballast tubes did not fail within the 2000 hours of required

testing. Therefore, no rejuvenation efforts were attempted. Both tubes

however, decreased in output power to approximately 75% of their original

power. The life curves indicate no substantial difference in life between

the case of 9 ma and 12 ma tube current.

The C02 over-fill tube, which had approximately 1.5 times more CO2

molecules initially than did the standard tubes, failed at approximately

800 hours. We continued rejuvenation and recording data only until 1000

hours since the rejuvenation data was similar to that seen on earlier tubes.

Having glass present in the glass insert tubes did not increase

their lifetime or alter their operating characteristics appreciably. The

glass, however, apparently did maintain a higher H2 and C02 content in the

tubes as compared to a standard tube as will be seen in the next section.
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Figure 7 Life test results on standard tube (MIL-STD-5)
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Figure 8 Life test results on standard tube (MC-STD-6)
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Figure 9 Shelf life test results for standard tube (MC-STD-7
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Figure 10 Life test results for tube with 50% overfill of C0O2 (MC-STD-8)



Figure 11 Life test results for tube with glass insert (MC-GI-1)
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Figure 12 Life test results for.tube with glass insert (MC-GI-2)
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Figure 15 Life test results on tube with ballast tank (MC-B-2)
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2.4 FAILURE ANALYSIS

2.4.1 Introduction

A failure analysis was performed on each of the tubes which had

reached a power level less than 25% of its original power during the life

test program. Although 8 of the 10 tubes life tested were run for at least

2000 hours, 6 of these had dropped to the failure level much earlier. The

rejuvenation process applied to these tubes was considered to be an import-

ant part of their failure analysis. Although the main objective of the pro-

gram was not to do extensive work in studying the life limiting factors in

CO2 lasers, some valuable information has been obtained from the limited

post-failure efforts which is applicable for metal-ceramic lasers using pure

nickel cathodes.

In order to obtain the maximum amount of information, a logical

sequence of steps for analyzing the tubes was employed. As earlier tubes

reached their failure point, the following examinations and tests were per-

formed:

1) Tube rejuvenation

2) Analysis of tube gases

3) Refilling of the tube with a fresh mix and comparing

its operation with operation at the start of life test.

4) Inspection of the tube exterior - especially the Brewster

windows.

5) Thorough leak check of the tube.

6) Inspection of the tube's internal parts including

absorption measurements on the Brewster windows.

7) Chemical analysis on cathode deposits.

The results of these tests, although not conclusive, were consistent

from tube to tube, indicating the adequacy of the process controls. Because

of the consistency of the results obtained on earlier tubes, additional tests

were devised and performed on later tubes involving adsorption - desorption

measurements, additional chemical tests, and further RGA analysis in order

to more fully understand the failure process.
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The analysis indicated that the tube failures were the result

of fundamental processes rather than from random or controllable effects

such as gas contamination from poor processing, inadequate cleanliness

during tube fabrication, or leaks.

The following sections describe in more detail the examinations

and tests performed during the failure analysis, and their results. 'Based

on the relatively consistent results, a failure hypothesis is offered which

appears to correlate the life time data obtained on tubes tested on this

program, as well as data from several tubes tested on earlier efforts.

2.4.2 Residual Gas Analysis

The relative partial?-pressures,of the tube gases were measured

with the aid of an EAI Quadrupole Residual Gas Analyzer. To obtain good

quantitative data it is required that the analyzer be accurately calibrated

for each gas species before absolute partial pressures can be obtained.

Over the relatively large pressure ranges of study here, we found that not

only did the calibration vary with the pressure of each gas, but also with

the mixture. Calibration for one condition can yield errors as high as a

factor of 3 for another condition, therefore, calibration of the test equip-

ment and reduction of the data has required a knowledge of the rate of change

of the system calibration as a function of partial pressures of the tube

gases.

Also, since several of the gas components to be analyzed are

composed of weakly bound molecules, the ionization current in the RGA tends

to break down some of the gas species during the analysis period. As a

result, a rigid timing procedure was required throughout the period of gas

sampling, introduction of the gas sample into the RGA, and rate of scan of

the RGA. Even with all of these precautions, it is expected that the ab-

solute pressures which were derived are accurate only to within 20%. For

the case of nitrogen and carbon monoxide, which share the same charge-to-

mass ratio (28) in the RGA, it is difficult to measure their contributions

separately. However, because of a markedly different RGA sensitivity figure

between the two gases, techniques were developed which provided about 40%

accuracy in the measurements of CO partial pressures.
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As an aid in conversion from relative pressures to absolute pres-

sures we have often used the helium gas from the laser mixture as a reference

in RGA readings. Since this gas is chemically inert and is sputter-pumped

relatively slowly, its partial pressure remains quite constant as a tube is

operated for a long period of time. By using helium as a reference, changes

in RGA configurations which may change the absolute peak heights as read

from the RGA could be tracked out allowing absolute pressures to be calculated

based on a known original fill pressure of helium.

Figure 17 is a block diagram of the gas analysis system. The

gases are sampled from a tube of interest using a specially designed sampling

valve obtained from Varian Associates. This solenoid actuated, gold O-ring

sealed, all-metal valve, shown in Figure 18, withdraws a 0.1 cc volume of

gas from the tube and deposits it in a gas manifold leading to the RGA. The

RGA is evacuated to 10-8 torr prior to introducing the manifold gas. It is

then operated statically between 10 and 10
-
5 torr during the analysis period.

The gas is then removed by the RGA Ion pump system in preparation for the next

sample.

To analyze the gases from the tubes which had failed, the tube was

attached to the vacuum processing station by epoxying a glass tubulation over

the break seal located at the tube center section. The sampling valve was

attached in parallel with a 1/2 inch Granville-Phillips valve. All of the

glass tubulation up to the break seal was evacuated to a pressure of less

than 1 x 10
-
6 torr after which a magnet was used to manipulate a steel ball

inside the tubulation to break the fragile breakseal. After waiting for

several minutes for the gas mixture to come to equilibrium, samples were

taken from the volume and analyzed. The mixture was analyzed several times

in order to obtain an average which could be compared with gas analysis made

on the initial fill prior to tip-off.

Table 3 shows the data obtained from the RGA analysis of several

tubes at different periods of their life cycles. Under the column marked

comments, the status of each tube just prior to the final RGA is given. The

numbers given are average values of the absolute quantities of each particular

gas. The RGA peak height ratios were changed to partial pressures using the

appropriate RGA calibration factors for each gas. The "initial" readings

34.



SAM PLE VALVE GRA NVILLE-
PHILLIPS

"C" VALVE

E VALVE

GAS ANALYSIS SYSTEM
FIGURE 17

tCo



sf\ 
: > 

<Jr 

U3 

Figure 18. Photograph of Sampling Valve. 



Table 3 - RGA Results for Life Test Tubes

PARTIAL PRESSURE (TORR)

H2 CO 02 Co2

Tube Comments Initial Tipoff Final Initial Tipoff Final Initial Tipoff Final Initial Tipoff Final

MC-STD-5 Final Power 0.20 0.12 0.52 0.00 2.10 7.60 0.10 0.93 0.00 8.00 4.40 2.26
650 mW. Two days
from last re-
juvenation

MC-STD-6 Final Power 0.20 0.12 0.24 0.00 2.10 1.90 0.10 0.93 0.10 8.00 4.40 4.70
>800 mW com-
plately re-
juvenated just
prior to RGA

MC-GI-1 Final Power 0.20 0.12 0.80 0.00 2.10 4.60 0.10 0.29 0.03 8.0 5.60 1.60
570 mW. Nine
days from last
rejuvenation

MC-GI-2 Let run until 0.20 0.12 0.12 0.00 2.10 1.45 0.10 0.29 0.00 8.0 5.60 0.47
power equalled
zero. Three
days from last
rejuvenation

MC-GI-3 Final power 0.20 0.12 1.12 0.00 2.10 6.70 0.10 0.29 0.00 8.0 5.60 2.54
660 mW. Three
days from last
rejuvenation



correspond to a time prior to initiation of the discharge, the "tip-off"

values correspond to readings taken within the processing period (75-100

hours) prior to removing the tubes from the processing station. These read-

ings were taken after the first 30 minutes of discharge, the time required

to reach the initial dissociation equilibrium on the final mix. The "final"

results were obtained after the tubes had failed, been rejuvenated and

operated for at least 2000 hours, and were taken during their failure analysis.

Several trends can be identified upon inspection of Table 3.

First, except for the case of MC-GI-2 which was run until its power dropped

to zero, the glass-insert tubes showed much more residual hydrogen than the

standard tubes. Although water vapor could not be measured specifically

because of high background, the increased amounts of hydrogen in these tubes

could imply substantial amounts of water vapor. The results show that at

tip-off the glass-insert tubes had more CO2 and less 02 than the standard

tubes, which seems to support the theories regarding the beneficial effects

of H20 vapor on reducing the dissociation rate of CO
2
. However, the glass

insert tubes did not have increased lifetimes because of the slower dis-

sociation rate.

In all cases the final amount of hydrogen was larger than the

initial amount. The metal-ceramic tubes appear to act as a source of hydrogen

throughout their lifetime. This is not surprising since numerous hydrogen

brazes were performed on various tube components during their fabrication.

Again for hydrogen, typical high background levels tend to make the numbers

less accurate than for the other gases. Based on previous gas mixture tests,

it is known that hydrogen partial pressures greater than about 0.5 Torr will

quench laser action in the tubes. Thus the 1.12 Torr and 0.8 Torr measured

on MC-GI-3 and MC-GI-1 respectively, is suspect since the output power from

these tubes was near the initial power (after rejuvenation).

Second, during the initial breakin period, the amount of CO2

decreased due to dissociation in the discharge, and the amount of H
2
de-

creased. We believe that H
2
decreased due to the formation of water-vapor

upon combining with free-oxygen in the discharge. The amounts of CO and 02

both increased as expected due to the dissociation of CO
2
.

38.



Third, it appears that the amount of CO present in the tubes

increases rapidly after the tube is operated subsequent to a rejuvenation

cycle. In the case of MC-GI-2, which had been run until zero power output

was obtained, a substantial amount of CO was apparently also consumed.

Fourth, only two tubes showed small amounts of oxygen present in

their final gas analysis. They were MC-GI-1 and MC-STD-6. MC-STD-6 had just

been rejuvenated prior to its final RGA, indicating that some oxygen was formed

in the process. The second tube, MC-GI-1, had a history of requiring rejuvena-

tion less frequently, which could be related to the fact that some oxygen

remained. The final partial pressures of the gases of MC-STD-6, were very

nearly the same as those obtained prior to tip-off, except that only a

small amount of oxygen was detected.

No analyses were made on the remainder of the tubes as they had

not failed at the writing of this report. Our conclusions based on this data

will be presented in Section 2.4.5. See Section 2.4.4 for additional RGA tests.

2.4.3 Optical Tests

Three optical tests were run on various tubes to determine if

Brewster window degradation was an important factor in their failure. First

the external surfaces of the Brewster windows were examined under a Fizzeau

Interferometer to determine if the surface had somehow become distorted dur-

ing the lifetime of the tube. The windows were found to be flat to less than

one-fringe in the visible, exceeding their fabrication specification.

Several tubes were refilled with a fresh mix and operated to de-

termine if optical losses of any kind existed in the tubes that were not

present initially. On all tubes, for which this test was performed, the

power output was down by an average of 30% from the pre-tip-off value, in-

dicating additional losses.

In order to determine if the inside of the Brewster windows had

been contaminated, some Brewster window assemblies were removed from the

tubes and tested for transmission. It was found that the window loss had

increased from their initial value of about 0.1% to an average of 0.8%
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which, to the accuracy of the measurements, accounts entirely for the observed

drop in power of the refilled tubes. We believe that the additional loss

is due to both anode and cathode material being deposited on the inside sur-

faces by sputtering. Visual examination of the anodes disclosed some dis-

coloration as well as small amounts of grayish-white deposit. The ceramic

bore had small amounts of sputtered material deposited on the inside surface

as evidenced by a shiny purple tint. Initially the bores are roughened and

white. The results of these measurements have been used to determine what

the basic lifetime would be if the window contamination process were the

only failure mechanism present. Assuming that the sputtering causes a

linear reduction in window transmission with operating time, the tube losses

would be sufficiently high within about 8000 hours to cause the tube to fail.

2.4.4 Chemical, Spectroscopic, and Related Tests

Prior to dismantling the tubes to examine their internal parts,

they were leak checked and found to be leak tight using a Veeco helium leak

detector with a sensitivity of better than 6 x 10 STD-cc/sec of helium.

The precursor tube, MC-STD-5, MC-GI-2 and MC-GI-3 were dismantled and

chemical tests were performed primarily on their cathodes. The overwhelming

evidence pointed to their cathodes as the source of their failures. All of

these tube's cathodes had large deposits of a greenish-black material, similar

in color to various forms of NiO and NiCO3, formed on their emission surfaces.

These deposits extended about 0.125 inch into the quartz supports. Figure 19

is a photograph of the deposits formed in one of the cathodes. The deposits

appeared to be formed in mounds and had some degree of crystallinity. The

areas of the surface which were not covered by these mounds appeared to be

covered with a black tenacious film. The mounds themselves were rather

powdery in substance and could easily be scraped off with a metal probe.

Two sets of cathodes and supports were sent to Sloan Research

Industries Incorporated for x-ray diffraction and emission spectrographic

analysis. The emission spectrographic analysis was performed to identify

any contaminant metallic-elements. Only nickel, silicon (from the quartz)

and platinum were found in any quantity. The x-ray diffraction analysis,

which can only detect the presence of crystalline compounds, revealed the

presence of only NiO and a possible unidentified intermetallic. The latter
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Figure 19. Photograph of a Nickel Cathode after 2,000 Hours of Operation. 



was only a trace amount. No carbon compounds of nickel (Ni3C, NiC03, etc.)

were detected. Neither method was capable of detecting the presence of

amorphous carbon, therefore its presnce or absence was not verified. The

detailed methods used and results are contained in Sloan Reports 177090 and

171160, found in Appendix A of this report.

The approximate weight of the deposits was found by removing them

from the cathode and quartz support surfaces by dissolving them in a solution

of H2S0
4
, HN0

3
, glacial acetic acid, and H20. This cleaning solution is recom-

mended for the removal of oxides from nickel.
( 2 ) This acid solution can dis-

solve NiCO3 and Ni as well as NiO but will not dissolve pure carbon or Ni3C.

The weight of the cathode and supports was accurately measured before and

after removal of the deposits, and from these measurements the weight of

deposits removed was determined to be approximately 28 mg. Although an

accurate quantitative measurement was not made, a large portion of the de-

posits removed were undissolved. These were assumed to be amorphous carbon

and perhaps Ni3 C. A second test was performed by placing a cathode in hot

NH4 OH, which will dissolve NiO but not NiCO3, or pure Ni. The cathode was

removed after 30 minutes with a relatively large percentage of the deposits

undissolved. Agitation of the cathode with a magnetic stirrer had loosened

some of the undissolved material which remained in the beaker. The NH OH was

then evaporated, and the beaker was weighed and compaired to its initial weight,

determined previously. The amount of deposit removed in this test was 3 mg.

This quantity, although slightly high because of loosened undissolved particles

is on the order of what one would expect if about one-half of the oxygen formed

by dissociation of CO
2

(approximately 4 Torr in 150 cc volume) were combined

with Ni to form NiO. (See Section 2.4.5.)

In order to understand the rejuvenation process more clearly, one

cathode and quartz support from a tube which had failed were sealed in a glass

vacuum tube with a thermocouple to monitor their temperature. The tube was

attached to a sampling valve so that residual gas analysis could be performed

on the gases given off upon heating. The test device is shown in Figure 20.

The tube had a clear window so that changes in color or character could be

observed as the temperature of the cathode, controlled by an external RF-

induction coil, was increased. Prior to heating, the tube was evacuated to

less than 1 x 10 6 torr to remove atmospheric gases and reduce background.
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The tube was then backfilled with 5 torr of helium which served as a refer-

ence for residual gas analysis, Then samples were taken from the tube and

analyzed at 500 C temperature increments as measured with the thermocouple.

Figure 21 is a graph of the RGA results obtained, showing how the gases are

evolved during rejuvenation. Below 200 C very small amounts of gas were

driven off. However, as the temperature was raised to 4000 C large amounts of

CO + N
2
and CO

2
were produced. The amount of 02 and H2 were below the de-

tection threshold of about 10 torr. The color of the deposits changed from

light green and black to khaki at the higher temperatures. Because of the

duration of the test, it was conducted on two separate days. The first day

a maximum cathode temperature of 300 C was reached. An RGA run was made on

that day after the tube had cooled down to room temperature. Results showed

that readsorbtion occurred to some extent on cool-down. The next day's test

was started with a second RGA at room temperature, then the cathode and sup-

port were raised to a temperature of 2500C where the test was resumed. At

reaching 4500 C, the maximum temperature attained by a tube cathode in the

rejuvenation cycle, the heat was removed and a final fun was made after cool-

down. The last point was taken after the tube sat for three days at room

temperature. As shown by this point, once again the gases were re-adsorbed

with about 60% of their maximum amounts obtained during the test still re-

maining. At room temperature, the deposits returned to their original light

green or black color.

In order to separate N
2

and CO, two curves are shown, assuming

in one case that all of the evolved gas with mass number 28 was CO, and in

the other that all of it was N2. There is no way to distinguish the two in

this case, as the cathode and supports had been exposed to the atmosphere

and could very well have had large amounts of N2 adsorbed on their surfaces.

Subsequent to this test a related test was run on MC-STD-6 after

it had been refilled. As the tube was run the gas concentrations in the

tube were monitored for several hours. The data showed that if the tube

were turned off for several hours, the relative quantities of C02, CO, and 02
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would decrease. The partial pressure of these gases would return when the

tube was again turned on. The data also showed that the quantities of all

of the gases were decreasing after about 10 hours of accumulated running

time. Data obtained on an earlier program and the results. obtained for

the early stages of tube life on this program indicate that for a tube with

a new cathode the relative quantity of 02 increases for approximately 60 to

70 hours of operation and then starts to fall. The amount of CO rises and

the CO2 falls until the CO2 is nearly consumed. Since this pattern was not

followed for this test on MC-STD-6 it was concluded that physical adsorption

and/or weak chemisorption were taking place on the cathode deposits and

that the rates were much higher than for a clean cathode. The rapid gas

clean-up rate and the fact that the reactions are reversible explains the

periodic requirement for rejuvenation of MC-STD-6, and other tubes.

The proposed failure mechanism presented in the following section

is based on the results obtained from these gas analysis studies and chemical

tests. Although the hypothesis has not been proven, we believe that it sat-

isfactorily explains the observed results.

2.4.5 Proposed Failure Mechanism

As has been shown by various gas analysis studies, the CO2 of the

laser mix disassociates in the discharge to form a quasi-equilibrium mixture

of CO2, CO, and 02. Present results indicate the following condition is

reached within the processing period for the tubes (4 100 hours);

(Initial fill pressures) (Gas composition at tip-off)

8 CO2 + 0.1 02 - 5.0 CO2 + 2.1 CO + 0.6 02 (free) + 1.05 02 (irreversibly

(1)
or reversibly bound) + 0.9 C (bound)

The 1.45 02 and 0.9 C must be postulated in order to balance the

equation. Since the oxidation of alpha-nickel is energetically favorable

at the cathode temperature (% 3000C)(3), it is assumed that within the 100

hour operating period NiO has begun to form on the cathode emission surface.
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In addition, sputtered nickel deposited on the cathode and quartz supports

may also be oxidized, and physical adsorption of oxygen on the nickel surface

has most probably occurred.

The equation 5.0 CO
2

++ 2.1 CO + 0.6 02 is clearly not a stable

equilibrium condition. The CO2 dissociates further in an attempt to attain

a stable equilibrium; however, this is not possible with an oxygen and carbon

"sink" in the system. The dissociation process would normally continue until

the cathode surface is covered with NiO, at which point further oxidation

would occur at a much slower rate due to the protective property of Ni0. How-

ever, as the formation of NiO continues, physical adsorption of oxygen, CO2

and CO becomes the primary rate determining process. It has been observed

that NiO strongly physically adsorbs these gases (4) If there is a suf-

ficient amount of CO2 and hence 02 present initially, the NiO formation and

gas adsorption processes appear to saturate, with enough CO
2

and 02 remain-

ing to maintain a stable equilibrium. Thus, as demonstrated in the ballast

tubes, tube life is not linearly proportional to tube volume.

If, as in the case of our standard fill and tube volume, there is

insufficient CO
2
available, the reactions proceed with the disappearance of

free oxygen, an increase in CO, and a corresponding decrease in CO2 until

most of it is consumed and the tube power output falls to zero. RGA results

on gas mixtures of failed tubes indicate that the molecular composition changes

from the tip-off values of

5.0 CO2 + 2.1 CO + 0.6 02 (free) + 1.45 02 (bound) + 0.9 C (bound) (2)

to that at failure of

0.5 C02 + 6.0 CO + 0.0 02 (free) + 4.6 02 (bound) + 1.5 C (bound) (3)

Reference 4 indicates that CO can be adsorbed by NiO and catalytical-

ly oxidized by pre-adsorbed 02 to form adsorbed CO2. In the rejuvenation pro-

cess, described earlier, heating the cathode above 400 C drives off the cat-

alytically formed C002 as well as reversibly bound 02. This now free 02

becomes available for oxidation of the excess CO in the discharge, forming
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more CO2. In order to explain the complete recovery of the quantity of

CO2 present at tip-off, the following equation is proposed for the tube

rejuvenation process;

0.5 CO2 + 6.0 CO + 0.002 (free) + 4.6 02 (bound) + 1.5 C (bound)

(3)

+ 4.7 CO2 + 1.9 CO + 0.102 (free) + 2.35 02 (bound) + 1.4 C (bound)

The 2.35 torr 02 which is not driven off during the rejuvenation process is

most likely irreversibly bound as NiO, and the 1.4 C has most likely been

consumed as pure amorphous carbon and Ni3 C.

In the well known Fischer-Tropsch Synthesis( 5 ) , a commercial

practice for producing higher order hydrocarbons, carbon-monoxide is cat-

alytically oxidized in the presence of nickel, forming CO2. In the process,

reactions of the form 3Ni + 2CO + NiC + C02 occur with Ni3C as a by-product.
3 2 3 3

It is believed that surface reactions of this sort with sputtered nickel con-

tained in the NiO account for the irreversible removal of small amounts of

carbon from the system. At the 300 C temperature of the cathode Ni 3C can

be broken down to the elements. The insoluble deposits mentioned in Section

2.4.4 are most probably Ni3C and pure carbon. The weight and volume occupied

by these deposits could be quite high without noticing any great change in

gas composition with the RGA, particularly if the quantity of helium in the tubes

does not remain constant as assumed, but decreases slowly by sputter pumping

or adsorption. To strengthen the above arguments more detailed measurements

should be made on the residual carbon and nickel carbide remaining on the

cathode and supports.

Three methods suggest themselves as possible methods for obtaining

tube lifetimes in excess of 2000 hours for the case of tubes using nickel

cathodes. (1) It may be possible to pre-oxidize and pre-process the cathodes

so that the desired equilibrium state is reached early in the processing

cycle of the tubes. Experiments would have to be performed to develop a

suitable NiO surface, adherent enough, with good emission properties, and

which would not sputter excessively for this to be a viable solution.

(2) The initial rate of oxidation of the cathode could be lowered substantially
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by reducing its temperature. This would extend the tube life by moving the

point at which adsorption becomes the major gas clean-up mechanism far out

into the tube's operating life. (3) Large gas-ballast can be added to the

tubes. As was seen with the ballast tubes, the extra C0O2 provided in the

larger volume allows the rapid chemical and physical reactions to saturate,

with sufficient CO2 remaining for the'tube to continue lasing. This method

of counteracting the failure mechanism, although effective, has two dis-

advantages. It adds additional weight and size to the standard tubes, and

it does not prevent the formation of loosely adherent deposits which could

scale off and be deposited on the Brewster windows in a weightless environ-

ment.

2.4.6 Metal-Ceramic Brazing Failures

As discussed in previous sections, a persistent leak problem

occurred in the outer ceramic-to-ceramic braze joint during fabrication of

several tube-end assemblies. After nearly a 100% yield on the first dozen

subassemblies, the vendor's yield dropped to 10%. Many discussions were

held with the vendor, going over all of the processes connected with this

subassembly, in an attempt to determine the cause. It was initially be-

lieved that the outer Kovar shell was too stiff and did not yield during

the cool-down cycle of the braze. Because of the expansion mismatch between

BeO and Kovar at the braze temperature, it was expected that a large amount

of shear stress could be in the ceramic-to-ceramic braze joint on cool down.

It was believed that with the strength of the metallizing (9000 psi) this was

a marginal situation even in good brazes. Subsequent tests, one using a

molybdenum compensator ring in the outer Kovar shell (see Figure 22b) which

allows the shell to more closely match the thermal expansion coefficient of

BeO, and a second, performing an abbreviated assembly braze without any

outer shell, proved that this was not the problem. Analysis made on the

nature of the failures disclosed that tiny cracks were propagating under the

metalizing layer indicating that the braze material itself was providing the

force to pull the metalizing layer away from the ceramic. It was concluded

that the initial metalizing batch, although it was properly mixed and con-

trolled according to the vendor's process controls, was unusually strong
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and provided the margin for success. A second vendor, using pure copper as

a malleable braze material and a different type of metalizing, was also un-

successful. It became obvious that the assembly design had to be changed if

we were to assure a reasonable yield.

The solution was obtained by eliminating the ceramic-to-ceramic

braze altogether and forming the ceramic as a monolithic structure. This

design provided several advantages.

1) The number of possible sources of leaks was reduced.

2) The amount of braze material exposed to the gases inside

the tube was reduced.

3) The heat conduction capabilities of the assembly were

increased by eliminating the ceramic-to-ceramic braze.

Figure 22a is a cross-section of the new tube-end assembly design.

Two such assemblies were constructed according to the final design without

any difficulties.

2.5 RELATED RESEARCH

2.5.1 Introduction

It was anticipated, and later verified, that the fundamental cause

of failure of a sealed CO2 laser tube is the gradual depletion of CO2 within

the tube. Although the mechanism responsible for this depletion are not yet

wholly understood, a small effort on this program was directed toward cir-

cumventing the problem by either slowing the rate of CO2 consumption or by

providing the source of CO
2
within the tube to replenish that consumed. This

section describes three sets of experiments performed along these lines.

According to Witteman( , the addition of small amounts of H20

vapor to the laser gas mix markedly increases the life of a CO
2

laser. One

area of exploration was therefore aimed at slowing the rate of depletion of

CO2 by adding H20 vapor to the tube. Experiments were performed wherein a

51.



a molecular sieve material, Zeolite, saturated with water vapor was added

to the interior of the laser tube. This material was to act as a resevoir

of water vapor within the tube. If the conclusions drawn by Witteman were

correct, the water vapor would catalyze the reformation of CO
2
from its

dissociation products and effectively reduce the consumption rate of CO
2
.

A second set of experiments was performed which investigated the

use of NiCO3 as a possible direct source of CO
2
within the tube. Here,

NiCO
3
within the tube would be heated to evolve CO

2
to replenish that con-

sumed as the tube was operated.

One of the tubes used on this program had a glass center section

to facilitate visual observation of its cathode. It happened that this laser

was relatively long lived, possibly due to outgassing of H20 by the glass.

In case it was determined that the long life was indeed due to the glass,

a third set of experiments was performed to vibrationally qualify the tube

for the space craft environment.

2.5.2 Zeolite as a Water Source

Experiments performed by Witteman in 1967 indicated that the

addition of H20 vapor to a CO
2
laser gas mixture extended the life of the

laser. He theorized that the OH radicals catalyze the reformation of CO2

from its dissociation products, CO and 0. Therefore, the addition of H20

within the tube effectively reduces the rate of consumption of CO2.

Accepting the premise that H20 vapor is beneficial to tube life,

one must then deal with the problem of introducing and maintaining the cor-

rect amount of vapor in the tube. The problem is not a simple one in that

it was determined that if the partial pressure of H20 is much greater than

0.5 torr, the power output of the tube is seriouslyjieffected; if much less,

any beneficial effects may be lost. Several methqds of adding the small

amount of vapor were considered.

Adding water vapor from an external source is unreliable since

water tends to be sorbed in unpredictable amounts by the tubing connecting

the external source and laser tube. Water vapor could also be introduced
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by adding to the laser mix stoichiometric quantities of H
2
and 02 and form-

ing H20 in the laser discharge. The problem here is that the equilibrium

gas mix resulting from the various chemical reactions occurring among the

many gas constituents present within the electrical discharge is difficult

to predict in any quantitative manner. Slight variations in the gas mix,

expecially the addition of H2, 02, or H20 strongly effect the power output

obtainable. Also, as the tube ages, the water content of the tube may very

appreciably as H20 is sorbed by the tube material or dissociated in the dis-

charge.

A third technique, that selected, is to add a small amount of

molecular sieve material to the interior of the tube, saturate this material

with water, and then let it act as a water reservoir for the tube. The

partial pressure of water vapor in the tube can then be varied by varying

the temperature of the sieve material. The following paragraphs detail the

concept.

Molecular sieves are crystalline metal alumino-silicates, a class

of compounds known as zeolites, with the peculiar property that the molecular

pores of any particular type of molecular sieve are precisely uniform in size

and molecular dimensions. The size of the pores determines what molecules

are absorbed by the zeolite and which molecules are rejected, hence, the name

molecular sieve. In other words, if the correct sieve material is used, it

should readily absorb H20, one of the smallest of all molecules, and reject

all others larger than H2 0. Such a zeolite is Linde Type 3A molecular sieve

with a pore size of 3 angstroms.

The amount of water vapor absorbed depends on the condition of

the zeolite upon exposure to water vapor, its dryness, and on the temperature

of the zeolite. In effect zeolite saturated with water vapor can act as a

water reservoir with the vapor pressure of water above it determined by its

temperature. With saturated zeolite in the tube, any decrease in water vapor

pressure due to chemisorption or decomposition will, to a large extent, be

compensated for by a corresponding outgassing of the zeolite. The equil-

ibrium water pressure can then be varied by changing the zeolite temperature.

The following paragraphs quantitatively describe the situation by determining

the change of H20 partial pressure within the tube resulting from a given
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change in the amount of water vapor due to processes not related to the

presence of the zeolite.

The water vapor partial pressure in the tube, P, is given in

terms of the gas temperature, T, and tube volume, V, by the expression

= NkT
V

where N is the number of water molecules and k is Boltzman's constant. Since

N = Mwt/m where Mwt is the total mass of water vapor and m is the mass per

water molecule given by the ratio of its molecular weight, 18, divided by

Avogadro's number, 6.02 x 10 23, the pressure is given by

P = 3.46 x 10 MwtT/V torr

where T is in OK and V is in cm3 (k = 1.036 x 10
- 1

9 torr cm3/°K). Dif-

ferentiating the expression for P with respect to Mwt and realizing that

dMwt = -dM - AM where dM is the change in water vapor mass retained by

the zeolite and AM is the change in water vapor mass due to sorption or other

processes within the tube that would occur if no zeolite were present one

obtains

3 T
dP = - 3.46 x 10 V (dMwz + AM)

An expression for dM wz, the change in water mass retained by the zeolite,

must now be determined as a function of pressure and zeolite temperature.

Figure 23 shows the mass (gms) of water vapor, M , sorbed by

100 gms of Linde Type 4A zeolite as a function of water vapor pressure for

several zeolite temperatures, T ( C). (According to Linde, Type 3A zeolite

will sorb 87% of the water that Type 4A will sorb. This factor will be taken

into account at the end of the analysis.) It can be seen that for the range

of water vapor pressure between 0.1 and 0.5 torr, (the primary range of inter-

est) these curves can be approximated by straight lines on this semi-log plot.
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Therefore, one can write

M
M = 100 [A(T ) + B(T ) log P] gis,

where M is the mass of zeolite in gms. The intercept, A(Tz), and slope,

B(T ), and slope, B(Tz), of the straight line fit are dependent on the
temperature of the zeolite, T . Again referring to the curves in figure 22

these two parameters can be closely estimated by using the following

emperical functions:

A2e-C2/TZ

A(T
z ) B2

Tz

and

C1
log B(Tz) = log A1 T +D

z
log e - B1 log (T +D)

where A, B, C, and D are curve fitting parameters determined to be

log A1 = 40.0 torr

torr/log C

torr °C

A2 = 6.49 x 1062

B
2

= 7.83 (log OC)-

C
2
= 89.4

Differentiating the resulting expression for Mwz with respect
to P and Tz, and substituting the result into the expression for dP obtained

previously, one obtains the following expression for the resulting change in
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B1 = 16.5

C
1
= 1600

D = 50 ° C ° C



pressure as a function of a zeolite temperature change, dT , and change in

tube water content, AM:

Mz(2 )m c V- kTI" (C + log P ( -B 1T OO z 2 T z T+D 1

1 + kTv MzB(T) log e]-10VP z K

'

where K = 3.46 x 10 cm torr gms K

The expression can be simplified if

100 VP
KT BT log e

z KT B(TZ) log e

B(T )

T +D
z

dT - AM

torr

With this condition met, and recalling that AM = KT- where AP is the water

vapor pressure change occurring if zeolite were not present, one obtains the

expression

[ C 2 _ lA(T ) C B(T Bd1 100V AP
--- B 2 + log P 1 BD dT +
T 2) T T +D 1 Tz KT M

dP -= ) torr
BC(T

z
) log e/Ptorr

For a zeolite temperature, Tz, of 50 C, initial water vapor pres-

sure of 0.5 torr, gas temperature of 25 0C = 298 OK and tube volume of 150 cm3,

the resultant change in water vapor pressure is

dP = 0.0446 dT + 0.0019 torr
z t

z

(With these parameters the simplified expression for dP can be used since

100 VP = 0.0019.)
KTB(T

z
) log e
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Since Type 3A zeolite was to be used, M should be reduced bywz
a factor of 0.87. The final expression for dP for Type 3A zeolite is

dP = 0.0446 dT + 0.0022 torrz M
z

It can be seen that the change in water vapor pressure is relatively

insensitive to water consumption or zeolite temperature fluctuations.

Based on these theoretical considerations, three laser tubes were

designed in incorporate a small quantity (0.1 gm) of zeolite. The zeolite

was contained in a copper oven attached as an appendage to the modified center

section of a standard metal-ceramic laser tube. Figure 24 depicts the design

of the laser tube and zeolite appendage.

The temperature of the copper oven containing the zeolite was main-

tained to within a fraction of a degree centigrade of a preset temperature by

the combination of two 10 watt heater elements embedded in the copper, a

temperature sensing thermistor also embedded in the copper, and external

electronics. The current through the heaters was turned on or off by the

electronics diagrammed in Figure 25 according to the temperature sensed by

the thermistor.

Although the ovens and their associated electronics were designed

and fabricated, a change in the program plan resulted in them not being used

on any life test lasers. The program plan was changed partly due to results

obtained with an experimental tube designed to test the zeolite addition con-

cept. The following paragraphs describe these experiments.

A tube was fabricated with the basic metal-ceramic design modified

to have a glass center section with an attached glass oven appendage contain-

ing the zeolite. Many experiments were performed to determine the effects

of zeolite on the partial pressures of the various tube gases as a function

of zeolite temperature. The partial pressure of tube gases was measured

with a residual gas analyzer.
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Figure 25 Zeolite Oven Controller
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It was found that the small pore size zeolite (Linde Type 3A)

does not absorb a significant amount of H
2
, 02, He, C02, N

2
, or CO for

zeolite temperatures between 20 and 3000°C. However, it can absorb large

quantities of H20. According to the calculations given previously, 95 mg

of zeolite should be capable of absorbing,about 260 times the water vapor

which would normally be obtained in a standard tube gas mixture. By

operating the zeolite at a constant temperature of about 500°C, the partial

pressure of the water vapor above the zeolite can be maintained at approxi-

mately 0.1 torr. The accuracy of zeolite temperature control required to

maintain this partial pressure should be approximately one or two degrees,

well within the range of the controller designed.

The most satisfactory technique for the introduction of an ac-

curate amount of water vapor into a zeolite tube was found to involve the

formation of water vapor in the tube from its constituents rather than

directly adding water vapor. The procedure used with 95 mgms of zeolite

called for the filling of a tube with 26 torr H
2
, 13 torr 02 and 10 torr

He. The tube was then discharged. After only 10 minutes of operation the

hydrogen and oxygen was completely combined and absorbed by the zeolite

as confirmed by residual gas analysis. Since the tube we were using for

these experiments utilized a glass center section it was easy to observe

the change in discharge color from a characteristic water vapor purple to

pure helium pink. The tube voltage also dropped from about 220 volts to

about 800 volts as the water vapor was absorbed by the Zeolite. Without

the discharge present, the H2, 02, He gas mix did not measurably change

with time (at least over several hours). After the Zeolite had been charged

with water vapor, the helium was quickly exhausted so as not to pump out a

significant amount of water vapor and the tube was filled with a standard

laser mix.

The tube was then run for 480 hours to compare the variation of

gas composition and tube voltage and power with those parameters of a standard

tube. The all metal-ceramic tube that this Zeolite tube was compared with

had also been used in many other experiments where it had been filled and

evacuated many times. The life history of the Zeolite tube is shown in

Figure 26. The two tubes were very similar in their life histories for

the first 100 hours in that the power, C02 content, and 02 content all

61.



$.4 5Ca

4CO + N

4

p4

m 2 - ---- - ......a)

HI

CO

0 100 200 300 400 500

= Elapsed Discharge Time (Hrs.)
O

Figure 26 Zeolite Tube Parameters vs. Discharge Time.
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and then lowered to 500 C.
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decreased at approximately the same rate. From residual gas analysis and a

leak check at the end of the 480 hour test, it was determined that the

Zeolite tube started leaking after about 130 hours of discharge. At 200

hours it was noticed that the rate of decrease of power was slightly greater

for the zeolite tube than for the standard tube. After raising the tempera-

ture of the zeolite to 600 C at the 200 hour mark, the power increased by 26%.

The CO
2
and CO+N

2
content increased also.

The power and CO
2
content continued to decrease at the previous

rate from this point as the tube was discharged an additional 225 hours. At

425 hours, the zeolite temperature was raised to 250 C and then returned to

50°C in a day's time with the discharge turned off. The result was to markedly

increase the CO2 partial pressure in the tube. The CO+N
2
and 02 content also

increased. This result indicated that the eolite or its glass oven may absorb

some gas over a long period of time. Upon discharging the tube, it was found

to have increased in power from 450 mw to 810 mw, 65% of the initial power of

1.25W. Baking the zeolite had also increased the voltage from its previously

constant value of 1900V to 2100V. This is indicative of a pressure increase.

In another 50 hours, the power had dropped back to the 450 mw

level, but the voltage remained at 2100V and the CO
2
remained at the level

it acquired just after bake. The test was terminated at this time after 480

hours. The power decrease could be caused by either the air leak or the CO2

partial pressure decrease.

Time limitation forced this effort of the program to be concluded

before extended life data could be obtained. Preliminary results indicated

that the Z,eolite does indeed perform the function of a water reservoir.

However, there is also some evidence that the zeolite may absorb some of the

laser gas constituents. Further research must be performed before the

merits of a zeolite addition to a CO2 laser tube can be properly assessed.

2.5.3 Nickel Carbonate as a CO2 Source

A more direct approach to solving the problem of maintaining a

constance partial pressure of CO
2
within a sealed laser tube is to provide

a source of CO2 within the tube which would compensate for any CO2 depletion.

63.



One source considered was NiCO
3
which gives off CO

2
when its temperature is

raised to about 300 C. To determine the possible effects of putting a

temperature controlled sample of NiC03 in a laser tube, a small amount of

NiCO3 was put in a glass oven connected to the vacuum station, residual

gas analyzer, and a capacitive manometer absolute pressure guage.

The first thing noticed was that it was difficult to outgas the

NiCO3 powder; a pressure of 8p was achieved after several days of pumping.

It was found that H20 vapor was the primary outgassing constituent.

Figure 27 shows the total gas pressure (in arbitrary units) as

the oven temperature was increased. Note the rapid rise in pressure occur-

ring when the NiCO3 temperature was raised to about 3000 C. The primary

gases given off were CO2 and CO.

It is not clear, then, that the use of NiCO
3
as a CO

2
source

would not produce deleterious effects in a laser tube. The fact that the

NiCO
3
was difficult to outgas shows that it may absorb some of the gases

from the laser mix. Another deleterious effect is that one product evolved

from the heated NiCO3 was CO, a gas desired to be kept to a minimum within

the laser tube.

2.5.4 Vibration Tests on Glass-Center-Section Tube

On an earlier program a metal-ceramic tube was constructed for

use primarily in a Brewster window tester jig. This tube, shown in Figure

28, utilized a glass center-section epoxied to the standard BeO-kovar tube

end sections. The glass center-section allowed visual observation of the

discharge characteristics and the physical processes occurring in the region

of the cathode during operation. The tube was processed extensively and was

also filled with 50% extra CO
2
. It was decided early in the program that

when the tube failed it should be subjected to a vibration test to determine

if the glass as well as the epoxy joints could withstand liftoff environments.

The tube was used in our Brewster window test fixture throughout the fab-

rication of all of the tubes on this program and failed near the end of the

program after more than 5000 hours of operation.
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Figure 28 Glass center section tube used for window testing 



Upon failing it was removed from the Brewster window test fixture

and subjected to the ATS-F sinusoidal vibration qualification levels. After

vibrating it was leak checked and found to be leak-tight using a detector with

a sensitivity of 6 x 10
-

10 STD-CC/sec of helium. Visual observation disclosed

that a substantial amount of the black deposits formed in the cathode area

during operation had been shaken loose.

This test demonstrated that a tube constructed with a glass center-

section, using epoxy seals, has the potential for being space-qualified. The

test also showed that the epoxy had not aged during the 5000 hours to the

point where it became hardened or porous.

The vibration test also demonstrated that the NiO and carbon

material formed on the cathode in tubes which have run for a long time can

be shaken loose. In a zero G environment this material would be free to

migrate to the Brewster windows and possibly reduce the laser output. Vib-

ration of relatively young tubes, however, would most likely not demonstrate

this problem.
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SECTION 3

ALL-GLASS CO
2
LASER TUBES

3.1 INTRODUCTION

As mentioned in Section 2.2.4, the presence of glass in CO
2

laser

tubes has been considered beneficial to tube life because of its ability to

hold water vapor. Prior to the start of this program NASA Goddard personnel

developed an all glass tube design capable of being space qualified. Sylvania

was tasked to fabricate nine of the NASA tubes on the current program using

an appropriate cathode design for the tube geometry chosen. Although no formal

fabrication and process specifications were to be developed for these tubes,

the process specifications used for the metal-ceramic tubes were to be applied

wherever applicable. Sylvania also was to design and fabricate nine life test

cavities (test benches) for delivery with the tubes. All testing efforts for

these tubes have been conducted by NASA and will therefore not be discussed

in this report.

The following sections discuss the general design of the tubes and

associated hardware and present the planned variations in gas mixtures which

were adopted for the tubes.

3.2 GLASS TUBE DESIGN

The tube design consists of a pyrex glass tube potted into the

aluminum heat sink using a space qualified potting compound, Cooling of the

bore is accomplished by conducting the heat through the potting compound to

the aluminum heat sink. Figure 29 is a sketch of the glass tube. It has

a nominal 5 mm diameter pyrex bore,: two parallel Brewster angle windows of

GaAs, two gas ballast pontoons, and two anode pins and a single cathode.

The total tube gas storage volume is approximately 75 cc. A photograph of

the tube is shown in Figure 30. The cathode is a nickel cylinder, platinum

plated on the outside with an emission surface area of 5.5 cm2. Samples

of the final design for the cathode-glass assembly were sent to NASA and

successfully vibration tested before incorporation in nine life test tubes.

Figure 31 shows an assembly drawing of the aluminum heat sink. It

consists of a base cavity, a cover, three aluminum risers, and three caps.

The tube is assembled in the heat sink with teflon washers holding it on

axis at both ends. Then the potting compound is added and allowed to cure.
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Figure 29 Glass Life Test Tube
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Figure 30 Photograph of all-glass tube 



Figure 31 Assembly drawing of aluminum heat sink
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3.3 GLASS LIFE TEST LASERS

Figure 32 is a photograph of a glass life test laser mounted on

its life test bench during processing. The life test benches designed for

use on the program were quite simple consisting of an aluminum base, two

commercially available mirror mounts, and a water-cooled mounting block.

The optical cavity consists of a metal-dielectric coated high-reflectivity

non-output mirror with an 84 cm radius of curvature. The non-output mir-

ror is mounted on a monolithic disc bender capable of providing cavity length

changes of up to 15 microns. The output mirror consists of a 5% transmitting

dielectric coating on a plane-parallel GaAs substrate. This mirror configura-

tion was chosen to provide a required output beam divergence of 0.20 with a

mirror separation of 14 inches. With these cavities the nominal power output

was 2.0 watts multimode using a gas mixture of 0.1 Torr H2, 1.0 Torr Xe,

5.0 Torr N2, 5.0 Torr CO2, and 10.0 Torr He. Operating voltage at 10 ma

total cathode current was about 2300 volts.

The potting compound used was Solithane formulation number Six

available from Thiokol Chemical Corporation. The hardness of the material

can be controlled by varying the resin to catalyst ratio. Some difficulty

with glass cracking during the bake-out cycle on the early tubes was seen

with the harder compositions, especially when the potting material was loaded

with aluminum power to increase its thermal conductivity. Thermal tests

later indicated that the aluminum powder did not significantly change the

thermal characteristics of the solithane and in fact was not required for

acceptable laser power output. The bore temperature at the operating tube

current ran at about 50 C both with and without the aluminum filler.

Two variables were chosen for these tubes. One involved changing

the amount of CO
2

and the other involved running a cathode in a separate

discharge chamber for about 100 hours prior to installing it into the laser

tube. During the preprocessing discharge, the cathode was heated to 330°C

using an RF induction coil.

Table 4 lists the nine tubes fabricated on this program, their

designation, and their processing variations.
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Figure 32 Completed glass life test laser with optical cavity 
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Standard Tube Mixture: 0.1 torr H2

1.0 torr Xe

5.0 torr N2

5.0 torr CO2

10.0 torr He

List of Glass Life Test Tubes and Their Life Test Variables.

Table 4.

75.

Designation Process Variation

1 GT-1 Standard Mixture

2 GT-2 Standard Mixture

3 GT-3 Standard Mixture

4 GT-4 50% Additional C02

5 GT-5 100% Additional CO2

6 GT-6 100% Additional CO2

7 GT-7 50% Additional C02

8 GT-8 Preprocessed Cathode
- 50% Additional C02

9 GT-9 Preprocessed Cathode
- Standard Mixture
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SECTION 4

LASER CONTROL ELECTRONICS

4.1 INTRODUCTION

As part of the earlier LCE program an automatic frequency control

unit for the laser subsystem was designed and fabrication was partially

completed before the LCE program was terminated. Since the unit was near

completion, a small additional effort was applied under this program to

complete the electronics to an operational level. Although high-reliability

parts were not used in this unit, all parts chosen have hi-rel counterparts.

4.2 SUMMARY OF ELECTRONICS SPECIFICATIONS

The frequency stabilization electronics are designed to accept the

output of a bolometer, which is viewing a sample of the laser:output power

through some wavelength selection optics, and to control the laser frequency

by means of the piezoelectric elementisupporting a cavity mirror until the

laser is operating on the center of the doppler profile of the desired wave-

length. To accomplish this, a system such as shown in the block diagram of

Figure 33 is used. Also shown in the figure is the partitioning of the

functions onto the five cards.

The electronics are designed so that when dc power is applied,

the laser mirror transducer will oscillate in an axial direction with an

amplitude of at least A/2 at a rate of about 1/2 Hz. During a portion of

this scan, the proper wavelength will be emited by the laser and detected

by the bolometer. When the power from the laser reaches a preset threshold

level, the slow scan will be inhibited and the electronics will lock the

laser frequency to the laser line center with the "dither" frequency control

loop. If thermal expansion of the laser cavity becomes too large for the

transducer range, the control loop will automatically drop out of lock and

search for a better transducer position on a different laser axial mode.

Some of the salient interface specifications of the unit are

shown in Table 5.
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TABLE 5

MAJOR INTERFACE SPECIFICATIONS

Power Supply Voltage:

Power Consumption

Dither Frequency

Search Frequency

Peak Input Level from Bolometer

Amplifier

Noise Density from Bolometer

Amplifier

Tuner Sensitivity:

Doppler Profile Width

Size:

Weight:

less than

Nominally

Nominally

11

+ 250V

+ 12V

- 12V

+ 5V

- 5V

1 watt

75-80 Hz

0.5 Hz + 20%

2.5V dc

1 ipV/v¶HT
8 MHz/Volt

100 MHz

6-1/4" x 4-1/2" x 3-3/8"

2 lbs.

These interface specifications serve only as a guide for typical

operation of the stabilization loop. The electronic control can accommodate

a wider range of laser parameters and bolometer parameters with some accom-

modations in closed loop bandwidth and peak dither deviation. The target

loop bandwidth is about 8 Hz and the peak dither deviation about 300 KHz.

4.3 STABILIZATION ELECTRONICS TEST RESULTS

The final packaging of the control electronics is shown in Figures

34 and 35. The dimensions, excluding connectors, are 6.14" x 4-1/2" x 3-1/4

high. The 3-1/4" dimension includes the 1/2" flange which has been provided

for mounting on a suitable pedestal. The packaging dimensions and connector

locations have been chosen to be compatible with the proposed layout for the

NASA designed Laser Technology Experiment.
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Figure 34 Photograph of the laser control electronics, front view 
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Figure 35 Photograph of the laser control electronics, rear view 



The weight of the unit with cards and lid in place was measured

to be 760 gm (1.68 lbs.).

Power supply currents with the unit operating normally are as

shown in Table 6.

TABLE 6

POWER SUPPLY CURRENTS

Current

2 mA

10 mA

2 mA

Max. Power

500 mW

120 mW

24 mW

24 mA locked, 42 mA
unlocked

14 mA

210 mW (max.)

70 mW

924 mW

The maximum power drain is seen to be less than 1 watt.

The operation of the unit was checked out with the aid of a "laser

simulator". This unit, using FET's with a common drain resistor and with

push-pull gate drives derived from the tuner voltage, simulates the output

voltage from the bolometer amplifier which would result from scanning the

laser frequency across the laser gain curve by varying the tuner voltage.

The stabilization electronics were demonstrated to be able to

search and lock on the simulated Doppler profile. The dither amplitude and

the threshold level adjustments ranges were measured with the results as

follows:

dither amplitude (at tuner driver output) 50 mV p-p to 900 mV p-p

threshold level < 0 V to greater than
+ 2.0V

82.

Voltage

+ 250V

+ 12V

- 12V

+ 5V

- 5V



The range of the inhibit circuit was observed to be 48V to 145V on the output

of the tuner driver. The dither frequency was 77 Hz and the sweep period was

2.25 sec.

The loop was demonstrated to be able to lock stably with the laser

simulator with the minimum dither amplitude. This value, 50 mV p-p, would

represent typically a frequency deviation of 400 KHz p-p or 200 KHz peak if

the laser tuning sensitivity is the nominal 8 MHz/volt. This value is below

the nominal target value of 300 KHz peak deviation.
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

During the course of this program nine new metal-ceramic CO2 laser

tubes and nine all glass CO
2

laser tubes were constructed for the purpose

of determining their life characteristics. Since the life testing of the

glass tubes was not performed by Sylvania on this effort, no conclusions will

be drawn at this time for the glass tubes, except that with the design features

worked out during this program it now appears feasible to proceed with the

formal development and space qualification of an all-glass laser tube if so

desired. As far as fabrication and operating characteristics are concerned,

the glass tube appears to have no major difficulties. The following para-

graphs relate the major results, conclusions and recommendations applicable

for the metal-ceramic tube.

The standard design metal-ceramic tube which uses a nickel cathode

and 150 cc of gas storage volume is capable of operating for 400-600 hours

before failure. Addition of pyrex glass (90 cm2 ) within the standard tube

(a possible source of water vapor) does not significantly affect tube life.

However, addition of extra CO2 to the initial fill can :increase tube life.

With a 50% overfill of CO
2
we obtained more than 50% increase in tube life

to about 825 hours. This was achieved, however, with a sacrifice of about

20% in initial power. Using a standard gas mixture but increasing the tube

gas storage volume to 500cc, lifetimes in excess of 2000 hours were demon-

strated in the present design without sacrificing laser power or efficiency.

However, additional weight and volume are required. The two tubes under

test which utilized the additional gas storage reservoir had dropped to about

75% of their initial power at the end of the 2000 hour test period. It should

be noted that the volume increase of about 230% resulted in greater than 340%

increase in tube life.

The data obtained with these test lasers along with other lasers

tested earlier, strongly suggests that the most rapid fundamental life lim-

iting effects which clean up the CO2 gas in these tubes can be saturated so

that the rate of CO
2 disappearance can be significantly reduced. From the
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failure analysis data taken on this program (see Section 2.4 for details)

we conclude that the oxygen provided to the tube volume by the breakdown

of CO2 chemically combines with the nickel cathode to form nickel oxide. It

also appears that carbon and/or nickel-carbon compounds collect at the cathode

surface. As the NiO and carbon compounds are formed they tend to protect the

surface from further oxidation, slowly reducing the rate at which oxygen is

chemisorbed. However, with the formation of these materials, which primarily

form in porous nodules with very large surface area, large amounts of the

other tubes gases, especially C02, CO, and 02 are adsorbed onto the cathode

surface. The temperatures at which the cathode operates (approximately

300°C) is not high enough to prevent this surface adsorption from occurring.

Therefore, early in tube life, oxygen is removed at a fairly high

rate through the formation of NiO. Then as the NiO builds up, the other

gases are selectively removed by adsorption. As the cathode surface becomes

covered with NiO and carbon, the adsorption process appears to approach sat-

uration if enough CO2 molecules are present in relation to the cathode size.

The process will never completely saturate, however, since cathode sputtering

will always act to slowly remove the NiO-carbon surface and deposit it in

other locations in the tube.

Measurements of Brewster window transmission, after the tube has

operated for 2000 hours, does show a small but significant buildup of con-

taminant material on the inside surface of the windows most likely originating

from the cathode. It appears as if the rate of buildup of this material alone

would limit tube life to between 5000 and 10,000 hours.

An interesting phenomenon observed during the course of these life

tests, which tends to confirm the failure mechanism proposed, was that all

of the tubes which had dropped significantly in power could be rejuvenated

to their original power. By boosting the cathode current by about a factor

of 2 for about 30 minutes, thus raising the cathode temperature to about 4000 C,

most of the adsorbed gases could be liberated from the cathode to allow normal

tube operation for an additional 50 to 300 hours. This rejuvenation process

can be repeated as often as necessary allowing tube operation at near original

power for 2000 hours or more.
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Further conclusions which might be drawn from the above data, are

that it may be advantageous to operate the nickel cathode at somewhat lower

temperature than the 3000C now used. This would not only reduce the rate of

NiO formation but also the rate of adsorption of the other gases. Preproces-

sing of the nickel cathode in a CO2 environment prior to installation in the

tube would also be advantageous.

It appears however, that to obtain tube life-times in excess of

5000 to 10,000 hours, a new cathode material will be required. This new

material must exhibit a satisfactory combination of:

a) low chemical reaction rate, at least after any

preprocessing or passivation efforts,

b) low sputtering rate of the basic material,

c) low sputtering rate of the compounds which are

formed on the cathode surface and

d) low adsorption characteristics.

Although the nickel cathode provides quite a good combination of

the above desired characteristics it must be improved upon if very long

lifetimes are to be realized in small-sized C02 laser tubes. Given freedom of

choice on tube size and therefore gas storage volume, the nickel cathode can

provide excellent life characteristics. Lifetimes in excess of 10,000 hours

have been demonstrated on earlier programs.

Although shelf-life information is still limited for the metal-

ceramic tube, the tests run here have shown that there is no significant re-

duction in tube capabilities for a shelf period under laboratory ambient

conditions of at least 3000 hours (4-1/2 months). We feel this period of

testing is long enough to determine that there are no significant chemical

adsorption, or contamination problems occurring outside of the discharge

area and the fundamental materials used in the current metal-ceramic tube

design have no deleterious effects on tube life over long storage periods.

A possible alternate approach to achieving long-life without the

use of a bulky gas storage reservoir involves the use of a solid state CO2

generator. Preliminary studies on this program indicate that NiC03, when

87.



heated to about 3000 C irreversibly gives off large quantities of CO2.

Periodic heating of a chamber filled with NiCO3 may be a very satisfactory

way of maintaining the CO2 partial pressure. Further research must be done

with NiCO3 or other source of CO2 to determine its effects on other tube

gases, and to determine the best techniques for maintaining the appropriate

CO
2

level.

Our studies on techniques for maintaining a constant partial

pressure of water vapor in the tube using Zeolite showed that the small

pore size variety of Zeolite is indeed an effective sponge for water vapor.

The Linde type 3A variety very effectively absorbs large quantities of

water vapor preferentially over other tube gases. By controlling the Zeolite

temperature to within a few degrees, the water vapor content in the tube can

be accurately controlled and maintained. Short-term life tests in a CO2

laser with Linde 3A Zeolite, however, indicated that although the water vapor

could be controlled, other tube gases were slowly being absorbed by the

Zeolite so that over a several day period a substantial drop in total tube

pressure was noted. These tests indicated that a fairly complex preproces-

sing cycle would have to be developed before Zeolite could be used effectively.
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SECTION 6

NEW TECHNOLOGY

During the performance of this program no items of new technology

were developed.
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APPENDIX

Report No. 171160 prepared by Sloan Research Industries Inc.

presents the techniques used, and the data, and results obtained from the

x-ray diffraction studies performed as part of the failure analysis of the

final precursor tube, R&D-1.

fraction,

formed on

Report No. 177090 present the results obtained from x-ray dif-

and emission spectrographic studies performed on the deposits

the cathode and quartz supports of MC-STD-5.
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Introduction

On August 23, 1971 a nickel cathodeand a quartz cathode

support were received in the laboratory for analytical studies.

It was requested that the dark contamination deposits appear-

ing on the inside surfaces of the pieces be analyzed by

X-ray diffraction and emission spectrographic techniques.

Of special interest were determination of carbonates and

copper compounds. The following report represents the results

of the studies and is hereby respectfully submitted.

Sample Preparation and Study Methods

The sample preparation to obtain the samples for both of the

analytical studies consisted of the following techniques:

U) The inside surfaces of both pieces were covered with a 5%

DI cellulose nitrate/amylacetate solution. When the cellulose

Z nitrate was dry it was loosened by steam permeation. On the

T quartz support it was possible to merely pull the cellulose

Er nitrate film off with large pieces of the deposit adhering

wLi to it; however, on the nickel cathode the cellulose nitrate
()
WL film could not be pulled off. For this sample it was there-

z fore necessary to resoften the film with amyl acetate and

e then scrape it off with a probe while wet. Portions of the

J deposit were scraped off at the same time. With the cellu-

lose nitrate effectively acting as a binder it was possible

to roll the mixtures into .lmm diameter fibers which were

then studied in a Debye-Scherrer Powder Diffraction Camera

according to the following exposure conditions:

Kilovolts Potential 30

Milliamps 15

Target Chromium

Filter Vanadium

Pinholes .025/.025-TS/SS

Film Type Ilford Industrial G Type
No Screen X-ray Film

1



Exposure 6 hours

Development 4 minutes/68°F in Eastman D-19
Developer

After the diffraction camera studies the same fibers were

then sent to Pacific Spectrochemical Laboratories for

emission spectrographic studies using standard carbon arc

electrode cup methods.

Discussion of the X-ray Diffraction Data

The enclosed X-ray diffraction film prints are contact

prints of the original negatives. Phase identification was

made by measuring the observed diffraction line spacing (1 mm =

2°8) and calculating the interplanar atomic spacing or d

(I) values. These were compared with standard data in the ASTM

Co X-ray diffraction file.
Z

O The X-ray diffraction studies showed both samples to be

Ir composed of a major phase of elemental nickel and strong

Ui intermediate phases of the NiO form of nickel oxide. The

Lii nickel cathode showed the highest concentration of nickel

z oxide even though considerable nickel was unavoidably scraped

0 from the cathode itself. There was no measurable amount

(less than 1%) of any copper compounds. Special checks were

made to be sure there were no overlapping lines for the

patterns of NiC03, Ni(HC03)
2

and NiC03-6H20. There is inter-

ference with the highest intensity lines of NiC and Ni3 C;

however, none of the other lines show up for these phases.

There is also no trace of the higher temperature oxide,

Ni203 form. Except for a very faint line representing the

highest intensity platinum reflection on the quartz support

sample no other phases are found to measurable extent (less

than 2%). The high silicon content of that sample is most

likely due to the quartz itself and, as such, would be

amorphous and could produce no diffraction pattern.
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The emission spectrographic data is as follows:

Deposit from
Nickel Cathode

Deposit from
Cathode Support

Ni-
Si-
Pt-
Mg-
Fe-
Cu-
Ca-
Cr-
Other
elements

78.%
0.24
0.30
0.0091
0.033
0.0025
0.014
0.0051

Ni-
Si-
Fe-
Pt-
Mg-
Cu-
Co-

Ca-
nil

Cr-

Other

66.%
5.8
0.43
3.0
0.019
0.015
trace (less than

0.05)
trace (less than

0.01)
tract (less than

0.04)

elements nil

3

W
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O
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W
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Introduction

On June 4, 1971 a nickel cathode and a quartz cathode support

were received in the laboratory for X-ray diffraction studies.

Studies were made of the black contamination found on the

inside diameter of both pieces and the green contamination

found on the edge of the quartz cathode support. The follow-

ing report represents the results of these studies and is

hereby respectfully submitted.

Sample Preparation and Study Methods

The deposits on the inside diameters were flaky and it was

possible to remove areas by merely lightly scraping with a

probe. The material thus removed was mixed with a 5% solution

of cellulose nitrate in amyl acetate. When the proper con-

D sistency was reached the mixtures were formed into .2 mm

Z diameter fibers and used as samples in a Debye-Scherrer

Powder Diffraction Camera. The green material was removed

from the edge of the quartz cathode support by covering the

XL surface of the deposit with a droplet of the cellulose nitrate
(n
XUj solution and allowing it to dry. This composite was then

peeled off with the aid of a razor blade with the cellulose

:< nitrate acting as a binder. The mixture was resoftened with
O
-J amyl acetate and formed into a fiber. The diffraction studies
()

were made according to the following exposure conditions:

Kilovolts Potential 30

Milliamps 15

Target Copper

Filter Nickel

Pinholes .025/.025-TS/SS

Film Type Ilford Industrial G Type
No Screen X-ray Film

Exposure 6 hours

Development 4 minutes/68°F in Eastman D-19
Developer

1 -



Discussion of the X-ray Diffraction Data

The enclosed X-ray diffraction film prints are contact prints

of the original negatives. Phase identification was made

by measuring the observed diffraction line spacing (1 mm = 200)

and calculating the interplanar atomic spacing or d values.

These were compared with standard data in the ASTM X-ray dif-

fraction file.

All three areas show the Nio to be present in each area. Both

of the inside diameter areas show in addition a pattern which

most closely matches the CuSn inter-metallic. This pattern

U) was previously interpreted and reported by telephone as

We1 elemental tungsten and tungsten sub-oxide; however, the copper/

tin inter-metallic gives a better solution to the d-spacing

values and intensities. The nickel cathode piece shows only

a minor amount of CuSn while the quartz support shows approxi-

mately equal contaminations of the CuSn and NiO phases. The

0Or~ green deposit on the edge of the quartz piece contains a

W major amount of NiO form, a minor amount of the Cu20 form of
i 2

copper oxide and a trace amount of the CuSn inter-metallic.

Z

J

(I)
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QUARTZ SUPPORT 
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XRD Film Print 3962 
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XRD Film Print 3961 
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DEPOSIT FROM ID 
OF QUARTZ CATHODE 
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XRD Film Print 3872 
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