366 research outputs found
Thiol biochemistry of prokaryotes
The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject
The evolution of glutathione metabolism in phototrophic microorganisms
The low molecular weight thiol composition of a variety of phototropic microorganisms is examined in order to ascertain how evolution of glutathione (GSH) production is related to the evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols (RSH) to fluorescent derivatives (RSmB) which were analyzed by high performance liquid chromatography (HPLC). Significant levels of GSH were not found in green sulfur bacteria. Substantial levels were present in purple bacteria, cyanobacteria, and eukaryotic algae. Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide. Many of the organisms also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability which was quenched by treatment with 2-pyridyl disulfide or 5,5 prime-bisdithio - (2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototropic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved
Recommended from our members
Paper honeycomb cores for structural building panels : effect of resins, adhesives, fungicide, and weight of paper on strength and resistance to decay
Information reviewed and reaffirmed September 1961. Report originally dated June 1951
A theoretical framework for the ecological role of three-dimensional structural diversity
The three-dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic–environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales
Shared national identification in Northern Ireland: An application of psychological models of group inclusion post conflict
The common ingroup identity model (CIIM) holds that viewing former outgroup members as part of a larger shared ingroup can allow social categorisation to be harnessed for social cohesion. The ingroup projection model (IPM) suggests that even where shared identification occurs, social divisions can be transposed into superordinate groups. Here we explore the potentially inclusive national identity in a region (Northern Ireland) which has historically seen a high polarisation of identities. Using three data sets (N = 2000; N = 359; N = 1179), we examine the extent to which a superordinate inclusive national identity, Northern Irish, is related to conciliatory attitudes. We find a common ingroup identity is linked to more positive social attitudes but not to more positive political attitudes. We conclude by considering the complexities of applying psychological models in the real world where structural and historical social divisions and vexing oppositional political questions can be transposed into new social and political orders
Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome
Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome. Am J Physiol Endocrinol Metab 315: E1087–E1097, 2018. First published August 21, 2018; doi:10.1152/ajpendo.00058.2018.—A 2-day workshop organized by the National Institutes of Health and U.S. Department of Agriculture included 16 presentations focused on the role of diet in alterations of the gastrointestinal microbiome, primarily that of the colon. Although thousands of research projects have been funded by U.S. federal agencies to study the intestinal microbiome of humans and a variety of animal models, only a minority addresses dietary effects, and a small subset is described in sufficient detail to allow reproduction of a study. Whereas there are standards being developed for many aspects of microbiome studies, such as sample collection, nucleic acid extraction, data handling, etc., none has been proposed for the dietary component; thus this workshop focused on the latter specific point. It is important to foster rigor in design and reproducibility of published studies to maintain high quality and enable designs that can be compared in systematic reviews. Speakers addressed the influence of the structure of the fermentable carbohydrate on the microbiota and the variables to consider in design of studies using animals, in vitro models, and human subjects. For all types of studies, strengths and weaknesses of various designs were highlighted, and for human studies, comparisons between controlled feeding and observational designs were discussed. Because of the lack of published, best-diet formulations for specific research questions, the main recommendation is to describe dietary ingredients and treatments in as much detail as possible to allow reproduction by other scientists
Designing the climate observing system of the future
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 6 (2018): 80–102, doi:10.1002/2017EF000627.Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs
Climate Science Special Report: Fourth National Climate Assessment (NCA4), Volume I
New observations and new research have increased our understanding of past, current, and future climate change since the Third U.S. National Climate Assessment (NCA3) was published in May 2014. This Climate Science Special Report (CSSR) is designed to capture that new information and build on the existing body of science in order to summarize the current state of knowledge and provide the scientific foundation for the Fourth National Climate Assessment (NCA4)
Non-adenine based purines accelerate wound healing
Wound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing. Full-thickness, excisional wound healing in healthy BALB/c mice was significantly accelerated by daily topical application of NABPs such as guanosine (50% closure by days 2.5′.8). Co-treatment of wounds with guanosine plus anti-NGF reversed the guanosine-promoted acceleration of wound healing, indicating that this effect of guanosine is mediated, at least in part, by NGF. Selective inhibitors of the NGF-inducible serine/threonine protein kinase (protein kinase N), such as 6-methylmercaptopurine riboside abolished the acceleration of wound healing caused by guanosine, confirming that activation of this enzyme is required for this effect of guanosine. Treatment of genetically diabetic BKS.Cg-m+/+lepr db mice, which display impaired wound healing, with guanosine led to accelerated healing of skin wounds (25% closure by days 2.8′.0). These results provide further confirmation that the NABP-mediated acceleration of cutaneous wound healing is mediated via an NGF-dependent mechanism. Thus, NABPs may offer an alternative and viable approach for the treatment of wounds in a clinical setting
Freshwater Sponges Have Functional, Sealing Epithelia with High Transepithelial Resistance and Negative Transepithelial Potential
Epithelial tissue — the sealed and polarized layer of cells that regulates transport of ions and solutes between the environment and the internal milieu — is a defining characteristic of the Eumetazoa. Sponges, the most ancient metazoan phylum [1], [2], are generally believed to lack true epithelia [3], [4], [5], but their ability to occlude passage of ions has never been tested. Here we show that freshwater sponges (Demospongiae, Haplosclerida) have functional epithelia with high transepithelial electrical resistance (TER), a transepithelial potential (TEP), and low permeability to small-molecule diffusion. Curiously, the Amphimedon queenslandica sponge genome lacks the classical occluding genes [5] considered necessary to regulate sealing and control of ion transport. The fact that freshwater sponge epithelia can seal suggests that either occluding molecules have been lost in some sponge lineages, or demosponges use novel molecular complexes for epithelial occlusion; if the latter, it raises the possibility that mechanisms for occlusion used by sponges may exist in other metazoa. Importantly, our results imply that functional epithelia evolved either several times, or once, in the ancestor of the Metazoa
- …