12 research outputs found

    Recirculating Etalon Spectrometer

    Get PDF
    Systems, methods, and devices may provide an optical scheme that achieves simultaneous wavelength channels and maintains the resolution and luminosity of an etalon. Various embodiments may provide a method to optically recirculate the light reflected from the etalon back through the same etalon at new angles. Various embodiments create an etalon spectrometer based on angular dispersion without moving parts and without losing the light that is not initially transmitted. Various embodiments may provide a spectrally-resolved receiver and/or transmitter. Various embodiments may provide a system including a retro-reflector, a detector or transmitter array, and an etalon disposed between the retro-reflector and the detector or transmitter array, wherein the retro-reflector is configured to redirect light reflected by the etalon back to the etalon at a different angle of incidence than an original angle of incidence on the etalon of the light reflected by the etalon

    A Multi-Wavelength IR Laser for Space Applications

    Get PDF
    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated

    Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    Get PDF
    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness

    Contributions of Stepping Intensity and Variability to Mobility in Individuals Poststroke

    Get PDF
    Background and Purpose: The amount of task-specific stepping practice provided during rehabilitation post-stroke can influence locomotor recovery, and reflects one aspect of exercise “dose” that can affect the efficacy of specific interventions. Emerging data suggest that markedly increasing the intensity and variability of stepping practice may also be critical, although such strategies are discouraged during traditional rehabilitation. The goal of this study was to determine the individual and combined contributions of intensity and variability of stepping practice to improving walking speed and distance in individuals post-stroke. Methods: This Phase 2, randomized, blinded assessor clinical trial was performed between May 2015-November 2018. Individuals between 18-85 years old with hemiparesis post-stroke of >6 months duration were recruited. Of the 152 individuals screened, 97 were randomly assigned to 1 of 3 training groups, with 90 completing >10 sessions. Interventions consisted of either high intensity stepping (70-80% heart rate [HR] reserve) of variable, difficult stepping tasks (high-variable), high intensity stepping performing only forward walking (high-forward), and low intensity stepping in variable contexts at 30-40% HR reserve (low-variable). Participants received up to 30 sessions over 2 months, with testing at baseline, post-training and a 3-month follow-up. Primary outcomes included walking speeds and timed distance, with secondary measures of dynamic balance, transfers, spatiotemporal kinematics and metabolic measures. Results: All walking gains were significantly greater following either high-intensity group vs low-variable training (all p<0.001) with significant correlations with stepping amount and rate (r=0.48-60; p<0.01). Additional gains in spatiotemporal symmetry were observed with high-intensity training, and balance confidence increased only following high-variable training in individuals with severe impairments. Conclusion: High intensity stepping training resulted in greater improvements in walking ability and gait symmetry than low-intensity training in individuals with chronic stroke, with potential greater improvements in balance confidence

    The impact of lidocaine plaster prescribing reduction strategies: A comparison of two national health services in Europe

    Get PDF
    AIMS: In 2017, two distinct interventions were implemented in Ireland and England to reduce prescribing of lidocaine medicated plasters. In Ireland, restrictions on reimbursement were introduced through implementation of an application system for reimbursement. In England, updated guidance on items which should not be routinely prescribed in primary care, including lidocaine plasters, was published. This study aims to compare how the interventions impacted prescribing of lidocaine plasters in these countries. METHODS: We conducted an interrupted time-series study using general practice data. For Ireland, monthly dispensing data (2015-2019) from the means-tested General Medical Services (GMS) scheme was used. For England, data covered all patients. Outcomes were the rate of dispensings, quantity and costs of lidocaine plasters, and we modelled level and trend changes from the first full month of the policy/guidance change. RESULTS: Ireland had higher rates of lidocaine dispensings compared to England throughout the study period; this was 15.22/1000 population immediately pre-intervention, and there was equivalent to a 97.2% immediate reduction following the intervention. In England, the immediate pre-intervention dispensing rate was 0.36/1000, with an immediate reduction of 0.0251/1000 (a 5.8% decrease), followed by a small but significant decrease in the monthly trend relative to the pre-intervention trend of 0.0057 per month. CONCLUSIONS: Among two different interventions aiming to decrease low-value lidocaine plaster prescribing, there was a substantially larger impact in Ireland of reimbursement restriction compared to issuing guidance in England. However, this is in the context of much higher baseline rates of use in Ireland compared to England

    Development of a complex intervention to promote appropriate prescribing and medication intensification in poorly controlled type 2 diabetes mellitus in Irish general practice

    No full text
    Abstract Background Poorly controlled type 2 diabetes mellitus (T2DM) can be seen as failure to meet recommended targets for management of key risk factors including glycaemic control, blood pressure and lipids. Poor control of risk factors is associated with significant morbidity, mortality and healthcare costs. Failure to intensify medications for patients with poor control of T2DM when indicated is called clinical inertia and is one contributory factor to poor control of T2DM. We aimed to develop a theory and evidence-based complex intervention to improve appropriate prescribing and medication intensification in poorly controlled T2DM in Irish general practice. Methods The first stage of the Medical Research Council Framework for developing and evaluating complex interventions was utilised. To identify current evidence, we performed a systematic review to examine the effectiveness of interventions targeting patients with poorly controlled T2DM in community settings. The Behaviour Change Wheel theoretical approach was used to identify suitable intervention functions. Workshops, simulation, collaborations with academic partners and observation of physicians were utilised to operationalise the intervention functions and design the elements of the complex intervention. Results Our systematic review highlighted that professional-based interventions, potentially through clinical decision support systems, could address poorly controlled T2DM. Appropriate intensification of anti-glycaemic and cardiovascular medications, by general practitioners (GPs), for adults with poorly controlled T2DM was identified as the key behaviour to address clinical inertia. Psychological capability was the key driver of the behaviour, which needed to change, suggesting five key intervention functions (education, training, enablement, environmental restructuring and incentivisation) and nine key behaviour change techniques, which were operationalised into a complex intervention. The intervention has three components: (a) a training program/academic detailing of target GPs, (b) a remote finder tool to help GPs identify patients with poor control of T2DM in their practice and (c) A web-based clinical decision support system. Conclusions This paper describes a multifaceted process including an exploration of current evidence and a thorough theoretical understanding of the predictors of the behaviour resulting in the design of a complex intervention to promote the implementation of evidence-based guidelines, through appropriate prescribing and medication intensification in poorly controlled T2DM

    Development of a complex intervention to promote appropriate prescribing and medication intensification in poorly controlled type 2 diabetes mellitus in irish general practice

    No full text
    Background: Poorly controlled type 2 diabetes mellitus (T2DM) can be seen as failure to meet recommended targets for management of key risk factors including glycaemic control, blood pressure and lipids. Poor control of risk factors is associated with significant morbidity, mortality and healthcare costs. Failure to intensify medications for patients with poor control of T2DM when indicated is called clinical inertia and is one contributory factor to poor control of T2DM. We aimed to develop a theory and evidence-based complex intervention to improve appropriate prescribing and medication intensification in poorly controlled T2DM in Irish general practice. Methods: The first stage of the Medical Research Council Framework for developing and evaluating complex interventions was utilised. To identify current evidence, we performed a systematic review to examine the effectiveness of interventions targeting patients with poorly controlled T2DM in community settings. The Behaviour Change Wheel theoretical approach was used to identify suitable intervention functions. Workshops, simulation, collaborations with academic partners and observation of physicians were utilised to operationalise the intervention functions and design the elements of the complex intervention. Results: Our systematic review highlighted that professional-based interventions, potentially through clinical decision support systems, could address poorly controlled T2DM. Appropriate intensification of anti-glycaemic and cardiovascular medications, by general practitioners (GPs), for adults with poorly controlled T2DM was identified as the key behaviour to address clinical inertia. Psychological capability was the key driver of the behaviour, which needed to change, suggesting five key intervention functions (education, training, enablement, environmental restructuring and incentivisation) and nine key behaviour change techniques, which were operationalised into a complex intervention. The intervention has three components: (a) a training program/academic detailing of target GPs, (b) a remote finder tool to help GPs identify patients with poor control of T2DM in their practice and (c) A web-based clinical decision support system. Conclusions: This paper describes a multifaceted process including an exploration of current evidence and a thorough theoretical understanding of the predictors of the behaviour resulting in the design of a complex intervention to promote the implementation of evidence-based guidelines, through appropriate prescribing and medication intensification in poorly controlled T2DM

    Development of a complex intervention to promote appropriate prescribing and medication intensification in poorly controlled type 2 diabetes mellitus in irish general practice

    No full text
    Background: Poorly controlled type 2 diabetes mellitus (T2DM) can be seen as failure to meet recommended targets for management of key risk factors including glycaemic control, blood pressure and lipids. Poor control of risk factors is associated with significant morbidity, mortality and healthcare costs. Failure to intensify medications for patients with poor control of T2DM when indicated is called clinical inertia and is one contributory factor to poor control of T2DM. We aimed to develop a theory and evidence-based complex intervention to improve appropriate prescribing and medication intensification in poorly controlled T2DM in Irish general practice. Methods: The first stage of the Medical Research Council Framework for developing and evaluating complex interventions was utilised. To identify current evidence, we performed a systematic review to examine the effectiveness of interventions targeting patients with poorly controlled T2DM in community settings. The Behaviour Change Wheel theoretical approach was used to identify suitable intervention functions. Workshops, simulation, collaborations with academic partners and observation of physicians were utilised to operationalise the intervention functions and design the elements of the complex intervention. Results: Our systematic review highlighted that professional-based interventions, potentially through clinical decision support systems, could address poorly controlled T2DM. Appropriate intensification of anti-glycaemic and cardiovascular medications, by general practitioners (GPs), for adults with poorly controlled T2DM was identified as the key behaviour to address clinical inertia. Psychological capability was the key driver of the behaviour, which needed to change, suggesting five key intervention functions (education, training, enablement, environmental restructuring and incentivisation) and nine key behaviour change techniques, which were operationalised into a complex intervention. The intervention has three components: (a) a training program/academic detailing of target GPs, (b) a remote finder tool to help GPs identify patients with poor control of T2DM in their practice and (c) A web-based clinical decision support system. Conclusions: This paper describes a multifaceted process including an exploration of current evidence and a thorough theoretical understanding of the predictors of the behaviour resulting in the design of a complex intervention to promote the implementation of evidence-based guidelines, through appropriate prescribing and medication intensification in poorly controlled T2DM

    Supporting general practitioner-based care for poorly controlled type 2 diabetes mellitus (the DECIDE study): feasibility study and protocol for a pilot cluster randomised controlled trial

    No full text
    Abstract Background Poorly controlled type 2 diabetes mellitus (T2DM) is associated with significant morbidity, mortality and healthcare costs. Control of T2DM can be challenging for healthcare professionals for a number of reasons, including poor concordance with medications, difficulties modifying lifestyle behaviour and also clinical inertia, which is defined as a reluctance among health professionals to intensify medications. A complex intervention, called ComputeriseD dECisIonal support for poorly controlleD typE 2 Diabetes mellitus in Irish General Practice (DECIDE), was developed, identifying T2DM patients with poor glycaemic and blood pressure control and aiming to target clinical inertia, by supporting therapeutic action, including GP-led medication intensification where appropriate. A small-scale, uncontrolled, non-randomised feasibility study highlighted the acceptability of the DECIDE intervention within Irish General Practice. This paper presents a protocol for a pilot cluster randomised controlled trial (RCT) of the DECIDE intervention. Methods/Design The pilot cluster RCT will involve 14 practices and 140 patients in Irish General Practice. Intervention GPs will participate in the DECIDE intervention, comprising (a) a training programme for the practices and (b) a web-based clinical decision support system supporting treatment escalation, tailored to specific patient information. Only patients who have poorly controlled T2DM (defined as HbA1c > 70 mmol/mol and/or BP > 150/95) will be included. The primary outcomes will include measures of feasibility such as recruitment and retention of practices and acceptability of the intervention and also HbA1c. Secondary outcomes will include medication intensification, blood pressure and lipids. Control GPs will continue to provide usual care. A process evaluation will be performed to determine whether the intervention is delivered as intended and treatment fidelity assessed to monitor and enhance the reliability and validity of interventions. An exploratory health economic analysis will examine the potential costs and cost effectiveness of the intervention relative to the control. Discussion A pilot cluster RCT will establish the feasibility of a complex intervention which aims to support primary care for patients with poorly controlled T2DM in Irish General Practice. Trial registration The protocol for the pilot cluster RCT is registered on the ISRCTN Registry at: ISRCTN69498919
    corecore