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Abstract

Background and Purpose: The amount of task-specific stepping practice provided during 

rehabilitation post-stroke can influence locomotor recovery, and reflects one aspect of exercise 

“dose” that can affect the efficacy of specific interventions. Emerging data suggest that markedly 

increasing the intensity and variability of stepping practice may also be critical, although such 

strategies are discouraged during traditional rehabilitation. The goal of this study was to determine 

the individual and combined contributions of intensity and variability of stepping practice to 

improving walking speed and distance in individuals post-stroke.

Methods: This Phase 2, randomized, blinded assessor clinical trial was performed between May 

2015-November 2018. Individuals between 18-85 years old with hemiparesis post-stroke of >6 

months duration were recruited. Of the 152 individuals screened, 97 were randomly assigned to 1 

of 3 training groups, with 90 completing >10 sessions. Interventions consisted of either high 

intensity stepping (70-80% heart rate [HR] reserve) of variable, difficult stepping tasks (high-

variable), high intensity stepping performing only forward walking (high-forward), and low 

intensity stepping in variable contexts at 30-40% HR reserve (low-variable). Participants received 

up to 30 sessions over 2 months, with testing at baseline, post-training and a 3-month follow-up. 

Primary outcomes included walking speeds and timed distance, with secondary measures of 

dynamic balance, transfers, spatiotemporal kinematics and metabolic measures.

Results: All walking gains were significantly greater following either high-intensity group vs 

low-variable training (all p<0.001) with significant correlations with stepping amount and rate 

(r=0.48-60; p<0.01). Additional gains in spatiotemporal symmetry were observed with high-
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intensity training, and balance confidence increased only following high-variable training in 

individuals with severe impairments.

Conclusion: High intensity stepping training resulted in greater improvements in walking ability 

and gait symmetry than low-intensity training in individuals with chronic stroke, with potential 

greater improvements in balance confidence.

Clinical Trial Registration-URL: https://clinicaltrials.gov/. Unique Identifier: NCT02507466
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Introduction

The increasing incidence1 and current survival rates of individuals who experience a stroke 

has resulted in a substantial patient population with neurological deficits that limit 

locomotor capacity and postural stability2, 3. In individuals with chronic (>6 months) stroke, 

mobility limitations4, 5 lead to reduced cardiopulmonary capacity that can further exacerbate 

locomotor deficits3. Previous work6, 7 suggests specific exercise training parameters, 

including the frequency, intensity, time and type, can influence changes in health and fitness 

in individuals with and without neurological injury8. These parameters represent the “dose” 

of exercise interventions, although their contributions to locomotor recovery post-stroke are 

uncertain. Early studies advocated that large amounts of stepping practice with focus on 

normalizing gait patterns was a critical determinant of improved mobility9-11. Unfortunately, 

a multicenter trial utilizing this strategy revealed limited gains beyond conventional 

approaches12. Additional research indicate treadmill exercise at submaximal aerobic 

intensities determined during baseline testing can improve walking endurance post-

stroke13-15, although changes in walking speed or other mobility outcomes (balance or 

transfers) are inconsistent or negligible. The combined findings imply that these dosage 

parameters may not be critical to locomotor recovery post-stroke.

An alternative hypothesis is that specific training variables can influence locomotor recovery 

when their manipulation substantially challenges the physiological demands associated with 

functional mobility. In particular, pilot studies indicate stepping training at cardiovascular 

intensities that are oftentimes greater than those achieved during baseline testing can 

improve multiple measures of locomotor and cardiopulmonary function16-18. In addition, 

increasing the variability and difficulty of stepping tasks (e.g., multidirectional walking, stair 

climbing, overground walking on uneven or compliant surfaces) requires increased 

neuromuscular coordination and postural control that may improve mobility and dynamic 

stability16, 17, 19.

Despite these findings, clinical implementation of high intensity stepping training in variable 

contexts is limited. Specific concerns include the potential for cardiovascular events20, 

despite data indicating no additional risks compared to standard interventions21. Additional 

concerns include practice of abnormal kinematic strategies, particularly in those with severe 

neuromuscular impairments during difficult, variable tasks. Such training deviates 
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considerably from traditional interventions that focus on correcting abnormal gait 

patterns9, 10, 12, although available data suggest gait kinematics can improve with variable 

stepping training16, 17, 22.

The present study examined the relative contributions of stepping intensity and variability on 

mobility outcomes in ambulatory individuals with chronic stroke. Using a randomized, 

controlled trial design, we hypothesized that high intensity stepping training in variable 

contexts would result in greater gains in locomotor outcomes as compared to more 

traditional training focused on forward walking, or low intensity training of variable 

stepping tasks. Additional outcomes included alterations in transfers, dynamic balance and 

balance confidence, spatiotemporal kinematics, peak metabolic capacity, and potential 

adverse events. Results from this trial could indicate the potential utility of high intensity 

training of variable, difficult tasks to improve mobility post-stroke.

Methods

The data that support the findings of this study are available from the corresponding author 

upon request. The present study was conducted between May 2015 to November 2018, and 

all procedures were approved by the local Institutional Review Board, with written informed 

consent and physician clearance to participate.

Study Sample and Design

Individuals with unilateral hemiparesis following a stroke >6 months previously were 

recruited. Eligible participants were required to walk 10 m overground without physical 

assistance but at self-selected speeds (SSS) <1.0 m/s, with their customary assistive devices 

and below-knee bracing as needed. Exclusion criteria consisted of additional central or 

peripheral nervous system or orthopedic injury that limits independent ambulation, evidence 

of cerebellar ataxia, currently participating in physical therapy, uncontrolled 

cardiorespiratory or metabolic disease, or inability to follow 3-step commands. Participants 

could receive botulinum toxin in their paretic leg <3 months prior to enrollment if injected 

only in their lower leg and the participant used an ankle-foot orthoses during testing. 

Subjects were stratified according to their initial SSS (<0.5 m/s or 0.5–0-1.0 m/s), and 

randomized to one of 3 stepping training groups, including high intensity stepping training 

in variable contexts (HV), high intensity stepping training forward on a treadmill and 

overground with minimal variability (HF), and low intensity variable stepping training (LV). 

Participants were randomized (allocation ratio: 1:1:1) using a computer-generated blocked 

design (6 participants per block) with allocation concealed. Preliminary data for high-

intensity variable16, high-intensity forward13-15, 23-25, and lower intensity paradigms24, 25 

indicated 90 participants would provide 98% power for primary walking outcomes (speed 

and timed distance) and 88–94% power for transfer and balance outcomes between HV and 

HF or LV groups.

Intervention

Training was performed in laboratory or outpatient clinical settings, and consisted of ≤30 1-

hr training sessions over 2 months (3–5 sessions/wk), with ≤40 minutes of stepping practice 
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each session. Each training paradigm has been described previously16. All participants wore 

accelerometers (StepWatch, Modus, Inc. Washington DC) on their paretic limb to estimate 

stepping amount and rate per session. Heart rates (HRs) were monitored using pulse-

oximeters or chest-worn monitors and documented every 3–5 minutes as possible, along 

with ratings of perceived exertion (RPE) using the Borg scale (range: 6–20)26. Blood 

pressures were monitored with training cessation if pressures could not remain below 

210/110 mmHg.

The goals of experimental HV training were to maximize stepping practice in variable 

contexts while achieving high cardiovascular intensities. Training HR ranges were calculated 

using age-predicted maximum (208-(0.7*age)27), and training HRs were established 70–

80% HR reserve using the Karvonen formula28. For participants on β-blockers, HR ranges 

were decreased by 10 beats/min29, 30. Training sessions were divided into ~10-minute 

increments between speed-dependent treadmill training, skill-dependent treadmill training, 

overground training, and stair climbing. Speed-dependent treadmill training was performed 

with an overhead safety system, with goals to achieve walking speeds sufficient to reach the 

targeted HRs. Body weight support and swing assistance were provided only as needed to 

achieve HRs. Therapists did not focus on lower extremity kinematics unless there were 

concerns regarding musculoskeletal injury. Criteria for successful stepping included positive 

bilateral step lengths, lack of stance-phase limb collapse, and sagittal/frontal plane 

stability16. Skill-dependent treadmill training was performed by applying perturbations to 

challenge postural stability, propulsion, and limb swing as selected by therapists, and 

included walking in multiple directions, over inclines and obstacles, and/or with weighted 

vests and leg weights with limited handrail use as tolerated. Perturbations were applied such 

that 2–5 different tasks were alternated and repeated within ~10 minutes. Task difficulty was 

reduced if participants were not successful for 3–5 consecutive steps. Overground training 

focused on achieving high speeds or performing variable tasks as described above, and 

included negotiating uneven, compliant or narrow surfaces, with use of a gait belt or 

overhead suspension system. Stair climbing was performed over static or rotating stairs 

(Stairmaster, Vancouver, WA) using reciprocal gait patterns with progression to higher 

speeds or reduced handrail use. If specific tasks were not practiced during individual 

sessions, subsequent sessions focused on missed tasks.

Training in the HF group consisted of maximizing stepping practice on a treadmill and 

overground while achieving 70–80% HR reserve. Only forward stepping was performed for 

≤20 minutes on a treadmill and ≤20 minutes overground, and task difficulty was altered by 

increasing walking speeds to achieve the targeted intensities.

Participants randomized to LV training performed stepping activities at 30–40% HR reserve 

although in variable contexts, similar to HV training described above, with therapist 

determination of tasks performed based on individual impairments. Therapists were allowed 

to cue participants to alter kinematics to improve engagement during stepping tasks.

Outcomes

Primary outcome measures were performed by blinded assessors at baseline, post-training, 

and at 3-month follow-up assessments. Specific outcomes included self-selected (SSS) and 
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fastest-possible speeds (FS) over short distances using a pressure-sensitive walkway 

(GaitMat, Chalfont, PA, or GaitRite, Haverton, PA) and walking distance during the 6-

minute walk test (6MWT) performed at FS16. Device and bracing use were consistent for 

each participant across all assessments. If participants required physical assistance during 

the 6MWT, the distance completed independently was recorded. Secondary gait measures 

from the SSS and FS assessments included indices of spatiotemporal symmetry. Temporal 

symmetry was evaluated as % paretic single-limb stance at SSS and FS. Spatial symmetry 

was determined using step-length symmetry16 calculated as below with negative values (i.e., 

negative step lengths) omitted as outliers:

100 % ∗ 1 − 1 − nonparetic step lengtℎ
paretic step lengtℎ

Secondary clinical measures with blinded assessors included the Functional Gait 

Assessment (FGA) to assess dynamic postural stability, and the 5-times sit-to-stand 

(5XSTS) performed using an adjustable height chair (3 in increments). Speed of sit-to-stand 

performance (repetitions/sec) was calculated to include data from those unable to perform 

the task. Subjective measures included the Activities-specific Balance Confidence (ABC) 

Scale, and the Physical Function/Mobility score of the Patient Reported Outcomes 

Measures. Additional measures included peak O2 consumption (VO2; ml/min/kg; Cosmed, 

Chicago, IL), HR, and RPE during a modified graded exercise testing using 12-lead ECG 

assessments. Participants walked on a treadmill at 0.1 m/s with an overhead safety system 

for 1 min, with speed increased 0.1 m/s every minute until gait instability, abnormal ECG 

recordings consistent with absolute testing contraindications, symptoms of angina, or 

participants requested to terminate testing31. Peak treadmill speed was determined following 

completion of 1 min at the highest velocity, with VO2, HR, and RPE collected over the last 

30 sec. Additional baseline assessments included the lower limb Fugl-Meyer assessment32 

and the Charlson Comorbidity Index33. Measures of training activities included number of 

sessions, mean duration, HR reserve, RPE, and steps per session and steps/min to estimate 

both amount and intensity of stepping.

Incidence of adverse events were tabulated, and included serious adverse events such as 

death, falls with injury outside of training, and cardiovascular events requiring 

hospitalization, and minor events of musculoskeletal pain, falls without injury outside of 

training, dizziness/loss of consciousness, excessive shortness of breath, or episodes of 

hypertension, hypotension or angina that limited training12.

Analysis

Parametric data were tested for normality prior to analyses. On-protocol analyses established 

a priori utilized data for participants who completed ≥10 training sessions, with additional 

intent-to-treat analyses for primary locomotor and secondary balance and transfer measures 

using all participants enrolled. Regression imputation for participant drop-outs using 

complete results was utilized for follow-up for on-protocol analyses and post-training and 

follow-up for intent-to-treat analyses. Training variables were compared between treatment 

groups using one-way ANOVAs, with mean (95% confidence intervals) in tables and figures. 
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Primary and secondary outcomes were analyzed using a 3-way repeated-measures ANOVA 

with main factors of treatment (HV, HF, LV), level of severity (<0.5, 0.5–1.0 m/s), and 

repeated for time (baseline, post-training, follow-up). Post-hoc ANOVAs were performed 

between specific groups or level of severity with significant interactions for groupXtime and 

groupXtimeXseverity. Significance was set at α=0.0167 with Bonferroni corrections made 

for primary walking outcomes (SSS, FS, and 6MWT), and α=0.05 for post-hoc and 

secondary measures. Correlations analyses were used to estimate associations between steps/

session, steps/min, and HR reserve with walking outcomes. Serious and minor adverse 

events were categorized by training, with X2 analyses performed by combing the two higher-

risk groups (HV, HV) as compared to low-intensity training (LV).

Results

Screening evaluations were performed on 152 individuals, with 97 meeting all inclusion 

criteria and randomized (Figure 1). Seven individuals (HV:3; HF:3; LV:1) completed <10 

training sessions, with reasons for termination including: difficulty of exercise training 

(HV:2, HF:1); lack of desire to continue (HF:1), scheduling conflicts (LV:1), family medical 

emergency (HV:1) and paretic hand pain unrelated to training (HF:1). Table 1 provides 

demographic characteristics and baseline impairments of the 90 participants who completed 

post-testing, with means (95% confidence intervals) indicating no differences between 

groups. Nine individuals (HV:2; HF:3; LV:4) could not attend follow-up.

Details of training interventions (Table 2) indicate similar number of sessions between 

groups with ~3 min longer sessions with LV training. Conversely, greater HRs and RPEs 

were observed during either high-intensity group vs low-intensity groups (p<0.001), with 

HR reserves calculated using both age-predicted and observed maximum HRs at baseline 

(Table 2). Training HRs in both high-intensity groups averaged above HRs at baseline 

testing. Differences in steps/sessions were observed, with 500 to 1000 more steps/session in 

HF than HV or LV, respectively, and consistent with differences in stepping rates (p<0.001, 

Table 2).

Baseline measures (Tables 3-4) were not significantly different across groups. Following 

training, significant groupXtime interactions for SSS, FS, and 6MWTs were observed 

favoring both HV and HF at post-training and follow-up, with non-significant interactions 

for severity. Intent-to-treat analyses resulted in similar findings (Supplement Table 1). Figure 

2A-B demonstrates changes in SSS and 6MWT (mean and 95% CI), with thresholds for 

minimally clinically important differences for SSS (0.10 m/s) and 6MWT indicated (50 m34; 

dotted lines). For all walking outcomes, 57–80% of participants in HV or HF groups 

surpassed minimally clinically important differences, whereas only 9.3–31% surpassed this 

thresholds following LV training. Mean differences between either high intensity-training 

group as compared to low intensity training were also larger than minimally important 

differences for SSS and FS at post-training and follow-up, and approached or exceeded these 

thresholds for 6MWT.

Secondary measures of spatiotemporal symmetry demonstrated no differences for step 

length symmetry, but greater improvements in paretic single-limb stance in either high-
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intensity group vs low-intensity training. An additional groupXtimeXseverity interaction 

was observed during SSS in participants with severe gait impairments in both high-intensity 

groups.

Secondary blinded clinical assessments revealed non-significant between-group interactions 

for the Functional Gait Assessment or 5X sit-to-stand (Table 4), although the former was 

significant with intent-to-treat analyses (Supplemental Table 1). Changes in subjective 

assessments revealed significant groupXtimeXseverity interactions for the Activities-specific 

Balance Confidence scale, indicating greater improvements following HV training in those 

with severe gait impairments. Specific improvements in this subgroup (ΔABC = 17 (95% CI: 

7–28) pts at post-training and 17 (5–28) pts at follow-up) were approximately 7–10 points 

greater than other training groups. Additional changes in graded exercise performance 

indicated significant differences in peak treadmill speeds following both high- vs low-

intensity training, with no differences in peak VO2.

Correlation analyses of specific dose vs response relationships revealed significant low to 

moderate associations between gait outcomes and mean steps/session (r=0.41–0.59, all 

p<0.001), with negligible to low correlations with mean HR reserve (r=0.09–0.29). 

Correlations using steps/min during walking practice revealed slightly higher associations 

(r=0.48–0.60; all p < 0.001) as indicated in Fig 2C-D for SSS and 6MWT.

Serious adverse events during training were not observed in any group. Minor adverse events 

consisted primarily of musculoskeletal pain (HV:27; HF:20; LV:18) and falls outside of 

training not resulting in injury (HV:8; HF:10; LV:16). Additional cardiopulmonary concerns 

included hypertension, angina, or shortness of breath (HV:6; HF:4; LV:8), and dizziness/loss 

of consciousness occurred in 5 individuals (HV:2; HF:3). If deemed necessary, participants 

were cleared by physicians following these episodes and continued participation. Adverse 

event rates were not different between both high- vs low-intensity groups (p=0.73).

Discussion

The present data extend upon preliminary studies detailing the efficacy of high intensity 

stepping training16, 17, 19 to improve locomotor function in individuals post-stroke. The 

cardiovascular intensities achieved during training (as determined using age-predicted 

maximum HRs) resulted in higher physiological demands than typically achieved during 

standard aerobic training studies13-15 and statistically and clinically significant differences 

between high vs low-intensity training groups for all walking measures. Greater HRs during 

high-intensity training were likely driven by elevated neuromuscular demands, as evident by 

differences in amount and rate of stepping between training groups. The contributions of 

these dosage parameters are highlighted by the relationships between stepping rates and 

amounts to changes in locomotor outcomes.

The contributions of task variability and difficulty are less clear, given the lack of significant 

differences in the Functional Gait Assessment or the 5X sit-to-stand test following the a 
priori on-protocol analyses (≥10 sessions completed). While differences in the Functional 

Gait Assessment with intent-to-treat analyses are promising, the clinical significance of a 2-
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point mean difference between groups is uncertain. Improvements in balance confidence 

(ABC) in those with severe gait impairments indicate additional potential benefits of HV 

training. Limitations of these combined findings include their clinical implications, as 

subjective measures of mobility were not different across groups. Indeed, a limitation of this 

study is that stepping activity in the home and community is not reported, and further work 

will evaluate potential changes in community mobility following these training paradigms.

Additional findings include differences in %single paretic-limb stance following high- vs 

low-intensity training, despite limited focus on kinematic patterns. Such data may mitigate 

concerns regarding reinforcing abnormal locomotor strategies. Conversely, changes in peak 

VO2 were not significant, and surprising given the differences in cardiovascular demands 

during high- vs low-intensity training and prior studies indicating consistent gains in peak 

VO2
13-15. This latter finding may be due to changes in neuromuscular efficiency that 

contributed to reduced submaximal metabolic costs35, and further work can provide insight 

into mechanisms of altered locomotor function.

Specific limitations include the sample size, although initial power calculations indicated 

this sample was sufficient to identify differences in primary and secondary outcomes. The 

lack of ability to accurately predict or estimate maximum HRs in patients with mobility 

dysfunction post-stroke is also a primary concern given the locomotor benefits observed here 

and the potential risk of cardiovascular events. We specifically utilized age-predicted 

maximum HRs secondary to neuromuscular deficits that can limit exercise performance and 

subsequent cardiovascular demands, particularly at baseline assessments. While observed 

maximum HRs at baseline testing are typically used to determine aerobic training 

thresholds, patients often surpass these levels during standard clinical testing31. Further 

work is needed to determine maximal HRs to allow safe aerobic training in clinical practice.

Finally, the lack of differences in adverse events are important given the cardiovascular 

concerns post-stroke, and previous studies also do not indicate additional cardiovascular 

risks with such training21. Further work is warranted to delineate the incidence of 

cardiovascular or other non-serious events in larger cohorts. Such studies will be critical 

given the consistent differences in locomotor outcomes with high-intensity training, and the 

potential changes observed with stepping in variable contexts.

Conclusions

Providing stepping training at high intensities with or without practice of variable, difficult 

stepping tasks elicits gains in walking function and gait symmetry as compared lower 

intensity activities. Changes in balance and balance confidence suggest a possible benefit of 

practicing difficult stepping tasks during high-intensity training in variable contexts. Despite 

non-significant differences in adverse events, future studies should further identify the 

potential risks for this patient population. The relative contributions of volume, intensity and 

variability may be important, and future studies are needed to further define optimal training 

parameters.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CONSORT diagram of enrollment
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Figure 2. 
A-B: Changes in SSS (2A) and 6MWT-FS (2B) in training groups at each assessment (mean 

and 95% CIs) with post-hoc significance (p<0.0001) denoted by asterisk (*). C-D: 

Associations between stepping rate and changes in Δ SSS and Δ6MWT-FS (p<0.01).
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