1,376 research outputs found
Linear and Branching System Metrics
We extend the classical system relations of trace\ud
inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces.\ud
\ud
Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances, and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and μ-calculus. We show that, while trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation) for deterministic boolean transition systems, linear\ud
and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound
Partial Preferences for Mediated Bargaining
In this work we generalize standard Decision Theory by assuming that two
outcomes can also be incomparable. Two motivating scenarios show how
incomparability may be helpful to represent those situations where, due to lack
of information, the decision maker would like to maintain different options
alive and defer the final decision. In particular, a new axiomatization is
given which turns out to be a weakening of the classical set of axioms used in
Decision Theory. Preliminary results show how preferences involving complex
distributions are related to judgments on single alternatives.Comment: In Proceedings SR 2014, arXiv:1404.041
Hedging Bets in Markov Decision Processes
The classical model of Markov decision processes with costs or rewards, while widely used to formalize optimal decision making, cannot capture scenarios where there are multiple objectives for the agent during the system evolution, but only one of these objectives gets actualized upon termination. We introduce the model of Markov decision processes with alternative objectives (MDPAO) for formalizing optimization in such scenarios. To compute the strategy to optimize the expected cost/reward upon termination, we need to figure out how to balance the values of the alternative objectives. This requires analysis of the underlying infinite-state process that tracks the accumulated values of all the objectives. While the decidability of the problem of computing the exact optimal strategy for the general model remains open, we present the following results. First, for a Markov chain with alternative objectives, the optimal expected cost/reward can be computed in polynomial-time. Second, for a single-state process with two actions and multiple objectives we show how to compute the optimal decision strategy. Third, for a process with only two alternative objectives, we present a reduction to the minimum expected accumulated reward problem for one-counter MDPs, and this leads to decidability for this case under some technical restrictions. Finally, we show that optimal cost/reward can be approximated up to a constant additive factor for the general problem
Intermediate Debonding in Frp Strengthened RC Beams: a Numerical Model
One of the most effective ways for improving the flexural strength of RC members consists in bonding FRP laminates at their soffit in order to upgrade the existing tensile strength. Strengthening RC beams by Externally Bonded FRP laminates is getting more and more common and various Codes of Standards have been issued in Europe, United States and Japan. In particular, the most up-to-date document has been released in Italy one year ago. A key problem to be faced when managing FRP strengthened beams deals with the possible premature failure due to debonding between the adhesive layer and concrete, which can occur at the beam end (end debonding) or in the cracked zone (intermediate debonding). In the present paper, a mechanical model considering non-linear stress-strain relationships for concrete, steel and FRP-to-concrete interface is presented, with the aim of simulating the behavior of RC beams strengthened by externally bonded FRP plates
Near-Optimal Scheduling for LTL with Future Discounting
We study the search problem for optimal schedulers for the linear temporal
logic (LTL) with future discounting. The logic, introduced by Almagor, Boker
and Kupferman, is a quantitative variant of LTL in which an event in the far
future has only discounted contribution to a truth value (that is a real number
in the unit interval [0, 1]). The precise problem we study---it naturally
arises e.g. in search for a scheduler that recovers from an internal error
state as soon as possible---is the following: given a Kripke frame, a formula
and a number in [0, 1] called a margin, find a path of the Kripke frame that is
optimal with respect to the formula up to the prescribed margin (a truly
optimal path may not exist). We present an algorithm for the problem; it works
even in the extended setting with propositional quality operators, a setting
where (threshold) model-checking is known to be undecidable
Can Nondeterminism Help Complementation?
Complementation and determinization are two fundamental notions in automata
theory. The close relationship between the two has been well observed in the
literature. In the case of nondeterministic finite automata on finite words
(NFA), complementation and determinization have the same state complexity,
namely Theta(2^n) where n is the state size. The same similarity between
determinization and complementation was found for Buchi automata, where both
operations were shown to have 2^\Theta(n lg n) state complexity. An intriguing
question is whether there exists a type of omega-automata whose determinization
is considerably harder than its complementation. In this paper, we show that
for all common types of omega-automata, the determinization problem has the
same state complexity as the corresponding complementation problem at the
granularity of 2^\Theta(.).Comment: In Proceedings GandALF 2012, arXiv:1210.202
Discounting in LTL
In recent years, there is growing need and interest in formalizing and
reasoning about the quality of software and hardware systems. As opposed to
traditional verification, where one handles the question of whether a system
satisfies, or not, a given specification, reasoning about quality addresses the
question of \emph{how well} the system satisfies the specification. One
direction in this effort is to refine the "eventually" operators of temporal
logic to {\em discounting operators}: the satisfaction value of a specification
is a value in , where the longer it takes to fulfill eventuality
requirements, the smaller the satisfaction value is.
In this paper we introduce an augmentation by discounting of Linear Temporal
Logic (LTL), and study it, as well as its combination with propositional
quality operators. We show that one can augment LTL with an arbitrary set of
discounting functions, while preserving the decidability of the model-checking
problem. Further augmenting the logic with unary propositional quality
operators preserves decidability, whereas adding an average-operator makes some
problems undecidable. We also discuss the complexity of the problem, as well as
various extensions
Progressive collapse of multi-storey buildings due to sudden column loss—Part II: Application
Accepted versio
- …
