21 research outputs found
Segmentation of the brain using direction-averaged signal of DWI images
Segmentation of brain tissue in diffusion MRI image space has some unique advantages. A novel segmentation method using the direction-averaged diffusion weighted imaging (DWI) signal is proposed. Two images can be obtained from the fitting of the direction-averaged DWI signal as a function of b-value: one with superior contrast between the gray matter and white matter; one with prominent CSF contrast. A pseudo T1 weighted image can be constructed and standard segmentation tools can be applied. The method was tested on the HCP dataset using SPM12, and showed good agreement with segmentation using the T1 weighted image with the same resolution. The Dice score was all greater than 0.88 for GM or WM with full DWI data and very stable against subsampling of the DWI data in number of diffusion directions, number of shells, and spatial resolution
PainPoints: A Framework for Language-based Detection of Chronic Pain and Expert-Collaborative Text-Summarization
Chronic pain is a pervasive disorder which is often very disabling and is
associated with comorbidities such as depression and anxiety. Neuropathic Pain
(NP) is a common sub-type which is often caused due to nerve damage and has a
known pathophysiology. Another common sub-type is Fibromyalgia (FM) which is
described as musculoskeletal, diffuse pain that is widespread through the body.
The pathophysiology of FM is poorly understood, making it very hard to
diagnose. Standard medications and treatments for FM and NP differ from one
another and if misdiagnosed it can cause an increase in symptom severity. To
overcome this difficulty, we propose a novel framework, PainPoints, which
accurately detects the sub-type of pain and generates clinical notes via
summarizing the patient interviews. Specifically, PainPoints makes use of large
language models to perform sentence-level classification of the text obtained
from interviews of FM and NP patients with a reliable AUC of 0.83. Using a
sufficiency-based interpretability approach, we explain how the fine-tuned
model accurately picks up on the nuances that patients use to describe their
pain. Finally, we generate summaries of these interviews via expert
interventions by introducing a novel facet-based approach. PainPoints thus
enables practitioners to add/drop facets and generate a custom summary based on
the notion of "facet-coverage" which is also introduced in this work
Fitting IVIM with Variable Projection and Simplicial Optimization
Fitting multi-exponential models to Diffusion MRI (dMRI) data has always been
challenging due to various underlying complexities. In this work, we introduce
a novel and robust fitting framework for the standard two-compartment IVIM
microstructural model. This framework provides a significant improvement over
the existing methods and helps estimate the associated diffusion and perfusion
parameters of IVIM in an automatic manner. As a part of this work we provide
capabilities to switch between more advanced global optimization methods such
as simplicial homology (SH) and differential evolution (DE). Our experiments
show that the results obtained from this simultaneous fitting procedure
disentangle the model parameters in a reduced subspace. The proposed framework
extends the seminal work originated in the MIX framework, with improved
procedures for multi-stage fitting. This framework has been made available as
an open-source Python implementation and disseminated to the community through
the DIPY project
Bifurcated topological optimization for IVIM
In this work, we shed light on the issue of estimating Intravoxel Incoherent Motion (IVIM)
for diffusion and perfusion estimation by characterizing the objective function using
simplicial homology tools. We provide a robust solution via topological optimization of
this model so that the estimates are more reliable and accurate. Estimating the tissue
microstructure from diffusion MRI is in itself an ill-posed and a non-linear inverse problem.
Using variable projection functional (VarPro) to fit the standard bi-exponential IVIM model
we perform the optimization using simplicial homology based global optimization to
better understand the topology of objective function surface. We theoretically show
how the proposed methodology can recover the model parameters more accurately
and consistently by casting it in a reduced subspace given by VarPro. Additionally
we demonstrate that the IVIM model parameters cannot be accurately reconstructed
using conventional numerical optimization methods due to the presence of infinite
solutions in subspaces. The proposed method helps uncover multiple global minima by
analyzing the local geometry of the model enabling the generation of reliable estimates
of model parameters.The National Institute of Biomedical Imaging And Bioengineering (NIBIB) of the National Institutes of Health (NIH); University of Washington’s Royalty Research Fund; NIH grants; the German Research Foundation (DFG) and a grant from the Alfred P. Sloan Foundation and the Gordon & Betty Moore Foundation to the University of Washington eScience Institute Data Science Environment.http://www.frontiersin.org/Neuroscienceam2022Chemical Engineerin
Optimal partitioning methods for image segmentation
The importance of image processing is increasing in the digitally connected world due to its numerous applications in various fields of medical science, astronomy, weather prediction and video surveillance systems etc. The latest research and development in this field has helped the authors to obtain finer details of a particular image under study. The image segmentation technique, a part of digital image processing, helps to obtain meaningful information of the object. This study discusses the three widely used important image segmentation techniques: namely, split and merge, image growing and thresholding and their effects on a sample image. The authors results thus depict a significant difference in the segmented image by split and merge, image growing and thresholding. Split and merge is the optimal method of image segmentation as compared with the other two techniques mentioned above. The choice of the method varies with type of image, its colour, intensity and noise level
Multi-scale V-net architecture with deep feature CRF layers for brain extraction
Abstract Background Brain extraction is a computational necessity for researchers using brain imaging data. However, the complex structure of the interfaces between the brain, meninges and human skull have not allowed a highly robust solution to emerge. While previous methods have used machine learning with structural and geometric priors in mind, with the development of Deep Learning (DL), there has been an increase in Neural Network based methods. Most proposed DL models focus on improving the training data despite the clear gap between groups in the amount and quality of accessible training data between. Methods We propose an architecture we call Efficient V-net with Additional Conditional Random Field Layers (EVAC+). EVAC+ has 3 major characteristics: (1) a smart augmentation strategy that improves training efficiency, (2) a unique way of using a Conditional Random Fields Recurrent Layer that improves accuracy and (3) an additional loss function that fine-tunes the segmentation output. We compare our model to state-of-the-art non-DL and DL methods. Results Results show that even with limited training resources, EVAC+ outperforms in most cases, achieving a high and stable Dice Coefficient and Jaccard Index along with a desirable lower Surface (Hausdorff) Distance. More importantly, our approach accurately segmented clinical and pediatric data, despite the fact that the training dataset only contains healthy adults. Conclusions Ultimately, our model provides a reliable way of accurately reducing segmentation errors in complex multi-tissue interfacing areas of the brain. We expect our method, which is publicly available and open-source, to be beneficial to a wide range of researchers
Fitting IVIM with Variable Projection and Simplicial Optimization
Fitting multi-exponential models to Diffusion MRI (dMRI) data has always been challenging due to various underlying complexities. In this work, we introduce a novel and robust fitting framework for the standard two-compartment IVIM microstructural model. This framework provides a significant improvement over the existing methods and helps estimate the associated diffusion and perfusion parameters of IVIM in an automatic manner. As a part of this work we provide capabilities to switch between more advanced global optimization methods such as simplicial homology (SH) and differential evolution (DE). Our experiments show that the results obtained from this simultaneous fitting procedure disentangle the model parameters in a reduced subspace. The proposed framework extends the seminal work originated in the MIX framework, with improved procedures for multi-stage fitting. This framework has been made available as an open-source Python implementation and disseminated to the community through the DIPY project