487 research outputs found

    Scalar field in a minimally coupled brane world: no-hair and other no-go theorems

    Full text link
    In the brane-world framework, we consider static, spherically symmetric configurations of a scalar field with the Lagrangian (\d\phi)^2/2 - V(\phi), confined on the brane. We use the 4D Einstein equations on the brane obtained by Shiromizu et al., containing the usual stress tensor T\mN, the tensor \Pi\mN, quadratic in T\mN, and E\mN describing interaction with the bulk. For models under study, the tensor \Pi\mN has zero divergence, so we can consider a "minimally coupled" brane with E\mN = 0, whose 4D gravity is decoupled from the bulk geometry. Assuming E\mN =0, we try to extend to brane worlds some theorems valid for scalar fields in general relativity (GR). Thus, the list of possible global causal structures in all models under consideration is shown to be the same as is known for vacuum with a LambdaLambda term in GR: Minkowski, Schwarzschild, (A)dS and Schwarzschild-(A)dS. A no-hair theorem, saying that, given a potential V0V\geq 0, asymptotically flat black holes cannot have nontrivial external scalar fields, is proved under certain restrictions. Some objects, forbidden in GR, are allowed on the brane, e.g, traversable wormholes supported by a scalar field, but only at the expense of enormous matter densities in the strong field region.Comment: 8 pages, Latex2e. Numerical estimates and a few references adde

    A symplectic realization of the Volterra lattice

    Full text link
    We examine the multiple Hamiltonian structure and construct a symplectic realization of the Volterra model. We rediscover the hierarchy of invariants, Poisson brackets and master symmetries via the use of a recursion operator. The rational Volterra bracket is obtained using a negative recursion operator.Comment: 8 page

    Efficient numerical diagonalization of hermitian 3x3 matrices

    Full text link
    A very common problem in science is the numerical diagonalization of symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an analytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from http://www.mpi-hd.mpg.de/~globes/3x3/ .Comment: 13 pages, no figures, new hybrid algorithm added, matches published version, typo in Eq. (39) corrected; software library available at http://www.mpi-hd.mpg.de/~globes/3x3

    Asymptotic Infrared Fractal Structure of the Propagator for a Charged Fermion

    Full text link
    It is well known that the long-range nature of the Coulomb interaction makes the definition of asymptotic ``in'' and ``out'' states of charged particles problematic in quantum field theory. In particular, the notion of a simple particle pole in the vacuum charged particle propagator is untenable and should be replaced by a more complicated branch cut structure describing an electron interacting with a possibly infinite number of soft photons. Previous work suggests a Dirac propagator raised to a fractional power dependent upon the fine structure constant, however the exponent has not been calculated in a unique gauge invariant manner. It has even been suggested that the fractal ``anomalous dimension'' can be removed by a gauge transformation. Here, a gauge invariant non-perturbative calculation will be discussed yielding an unambiguous fractional exponent. The closely analogous case of soft graviton exponents is also briefly explored.Comment: Updated with a corrected sign error, longer discussion of fractal dimension, and more reference

    Coordinate Representation of the Two-Spinon wavefunction and Spinon Interaction

    Full text link
    By deriving and studying the coordinate representation for the two-spinon wavefunction, we show that spinon excitations in the Haldane-Shastry model interact. The interaction is given by a short-range attraction and causes a resonant enhancement in the two-spinon wavefunction at short separations between the spinons. We express the spin susceptibility for a finite lattice in terms of the resonant enhancement, given by the two-spinon wavefunction at zero separation. In the thermodynamic limit, the spinon attraction turns into the square-root divergence in the dynamical spin susceptibility.Comment: 19 pages, 5 .eps figure

    Exotic Statistics for Ordinary Particles in Quantum Gravity

    Full text link
    Objects exhibiting statistics other than the familiar Bose and Fermi ones are natural in theories with topologically nontrivial objects including geons, strings, and black holes. It is argued here from several viewpoints that the statistics of ordinary particles with which we are already familiar are likely to be modified due to quantum gravity effects. In particular, such modifications are argued to be present in loop quantum gravity and in any theory which represents spacetime in a fundamentally piecewise-linear fashion. The appearance of unusual statistics may be a generic feature (such as the deformed position-momentum uncertainty relations and the appearance of a fundamental length scale) which are to be expected in any theory of quantum gravity, and which could be testable.Comment: Awarded an honourable mention in the 2008 Gravity Research Foundation Essay Competitio

    Settlements of Neighboring Buildings During Piling Works

    Get PDF
    Two case histories of heavy damaging the neighbouring buildings in Sankt-Petersburg during construction the bored piles are presented. The analysis of causes of the damages has shown that ground inflow into the housing tubes due to low strength properties of water saturated liquid-plastic loams is the main cause of additional settlements of existing houses during construction the bored piles of large diameter close to them

    Submesoscale physicochemical dynamics directly shape bacterioplankton community structure in space and time

    Get PDF
    Submesoscale eddies and fronts are important components of oceanic mixing and energy fluxes. These phenomena occur in the surface ocean for a period of several days, on scales between a few hundred meters and few tens of kilometers. Remote sensing and modeling suggest that eddies and fronts may influence marine ecosystem dynamics, but their limited temporal and spatial scales make them challenging for observation and in situ sampling. Here, the study of a submesoscale filament in summerly Arctic waters (depth 0–400 m) revealed enhanced mixing of Polar and Atlantic water masses, resulting in a ca. 4 km wide and ca. 50 km long filament with distinct physical and biogeochemical characteristics. Compared to the surrounding waters, the filament was characterized by a distinct phytoplankton bloom, associated with depleted inorganic nutrients, elevated chlorophyll a concentrations, as well as twofold higher phyto- and bacterioplankton cell abundances. High-throughput 16S rRNA gene sequencing of bacterioplankton communities revealed enrichment of typical phytoplankton bloom-associated taxonomic groups (e.g., Flavobacteriales) inside the filament. Furthermore, linked to the strong water subduction, the vertical export of organic matter to 400 m depth inside the filament was twofold higher compared to the surrounding waters. Altogether, our results show that physical submesoscale mixing can shape distinct biogeochemical conditions and microbial communities within a few kilometers of the ocean. Hence, the role of submesoscale features in polar waters for surface ocean biodiversity and biogeochemical processes need further investigation, especially with regard to the fate of sea ice in the warming Arctic Ocean

    Multitemporal generalization of the Tangherlini solution

    Full text link
    The n-time generalization of the Tangherlini solution [1] is considered. The equations of geodesics for the metric are integrated. For n=2n = 2 it is shown that the naked singularity is absent only for two sets of parameters, corresponding to the trivial extensions of the Tangherlini solution. The motion of a relativistic particle in the multitemporal background is considered. This motion is governed by the gravitational mass tensor. Some generalizations of the solution, including the multitemporal analogue of the Myers-Perry charged black hole solution, are obtained.Comment: 14 pages. RGA-CSVR-005/9

    Correlation effects during liquid infiltration into hydrophobic nanoporous mediums

    Full text link
    Correlation effects arising during liquid infiltration into hydrophobic porous medium are considered. On the basis of these effects a mechanism of energy absorption at filling porous medium by nonwetting liquid is suggested. In accordance with this mechanism, the absorption of mechanical energy is a result expenditure of energy for the formation of menisci in the pores on the shell of the infinite cluster and expenditure of energy for the formation of liquid-porous medium interface in the pores belonging to the infinite cluster of filled pores. It was found that in dependences on the porosity and, consequently, in dependences on the number of filled pores neighbors, the thermal effect of filling can be either positive or negative and the cycle of infiltration-defiltration can be closed with full outflow of liquid. It can occur under certain relation between percolation properties of porous medium and the energy characteristics of the liquid-porous medium interface and the liquid-gas interface. It is shown that a consecutive account of these correlation effects and percolation properties of the pores space during infiltration allow to describe all experimental data under discussion
    corecore