1,504 research outputs found
Entanglement generation in relativistic cavity motion
We analyse particle creation and mode mixing for a quantum field in an
accelerated cavity, assuming small accelerations but allowing arbitrary
velocities, travel times and travel distances, and in particular including the
regime of relativistic velocities. As an application, we identify a desktop
experimental scenario where the mode mixing resonance frequency in linear
sinusoidal motion or in uniform circular motion is significantly below the
particle creation resonance frequencies of the Dynamical Casimir Effect, and
arguably at the threshold of current technology. The mode mixing acts as a
beamsplitter quantum gate, experimentally detectable not only via fluxes or
particle numbers but also via entanglement generation.Comment: 8 pages, LaTeX with jpconf. Submitted to DICE2012 proceeding
Dichroism for orbital angular momentum using parametric amplification
We theoretically analyze parametric amplification as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field
A revisitation of the 1888 H.Hertz experiment
We propose a revisitation of the original experiment performed by H. Hertz in
1888. With a simple setup it is possible to produce electromagnetic waves with
a frequency in the range of 3 MHz. By performing Fourier analysis of the signal
captured by a resonant antenna it is possible to study the behaviour of the RLC
series circuit, frequency splitting of coupled resonances and finally the
characteristics of the near-field emitted by the loop antenna
Experimental quantum cosmology in time-dependent optical media
It is possible to construct artificial spacetime geometries for light by
using intense laser pulses that modify the spatiotemporal properties of an
optical medium. Here we theoretically investigate experimental possibilities
for studying spacetime metrics of the form
. By tailoring the laser
pulse shape and medium properties, it is possible to create a refractive index
variation that can be identified with . Starting from a
perturbative solution to a generalised Hopfield model for the medium described
by an we provide estimates for the number of photons generated by the
time-dependent spacetime. The simplest example is that of a uniformly varying
that therefore describes the Robertson-Walker metric, i.e. a
cosmological expansion. The number of photon pairs generated in experimentally
feasible conditions appears to be extremely small. However, large photon
production can be obtained by periodically modulating the medium and thus
resorting to a resonant enhancement similar to that observed in the dynamical
Casimir effect. Curiously, the spacetime metric in this case closely resembles
that of a gravitational wave. Motivated by this analogy we show that a periodic
gravitational wave can indeed act as an amplifier for photons. The emission for
an actual gravitational wave will be very weak but should be readily observable
in the laboratory analogue.Comment: Version accepted fro publication in New Journal of Physic
Quantum radiation from superluminal refractive index perturbations
We analyze in detail photon production induced by a superluminal refractive
index perturbation in realistic experimental operating conditions. The
interaction between the refractive index perturbation and the quantum vacuum
fluctuations of the electromagnetic field leads to the production of photon
pairs.Comment: 4 page
Synthetic magnetism for photon fluids
We develop a theory of artificial gauge fields in photon fluids for the cases
of both second-order and third-order optical nonlinearities. This applies to
weak excitations in the presence of pump fields carrying orbital angular
momentum, and is thus a type of Bogoliubov theory. The resulting artificial
gauge fields experienced by the weak excitations are an interesting
generalization of previous cases and reflect the PT-symmetry properties of the
underlying non-Hermitian Hamiltonian. We illustrate the observable consequences
of the resulting synthetic magnetic fields for examples involving both
second-order and third-order nonlinearities
On the nature of spatiotemporal light bullets in bulk Kerr media
We present a detailed experimental investigation, which uncovers the nature
of light bullets generated from self-focusing in a bulk dielectric medium with
Kerr nonlinearity in the anomalous group velocity dispersion regime. By high
dynamic range measurements of three-dimensional intensity profiles, we
demonstrate that the light bullets consist of a sharply localized
high-intensity core, which carries the self-compressed pulse and contains
approximately 25% of the total energy, and a ring-shaped spatiotemporal
periphery. Sub-diffractive propagation along with dispersive broadening of the
light bullets in free space after they exit the nonlinear medium indicate a
strong space-time coupling within the bullet. This finding is confirmed by
measurements of spatiotemporal energy density flux that exhibits the same
features as stationary, polychromatic Bessel beam, thus highlighting the
physical nature of the light bullets
Extreme Events in Resonant Radiation from Three-dimensional Light Bullets
We report measurements that show extreme events in the statistics of resonant
radiation emitted from spatiotemporal light bullets. We trace the origin of
these extreme events back to instabilities leading to steep gradients in the
temporal profile of the intense light bullet that occur during the initial
collapse dynamics. Numerical simulations reproduce the extreme valued
statistics of the resonant radiation which are found to be intrinsically linked
to the simultaneous occurrence of both temporal and spatial self-focusing
dynamics. Small fluctuations in both the input energy and in the spatial phase
curvature explain the observed extreme behaviour.Comment: 5 pages, 5 figures, submitte
Phase-Insensitive Scattering of Terahertz Radiation
The nonlinear interaction between Near-Infrared (NIR) and Terahertz pulses is
principally investigated as a means for the detection of radiation in the
hardly accessible THz spectral region. Most studies have targeted second-order
nonlinear processes, given their higher efficiencies, and only a limited number
have addressed third-order nonlinear interactions, mainly investigating
four-wave mixing in air for broadband THz detection. We have studied the
nonlinear interaction between THz and NIR pulses in solid-state media
(specifically diamond), and we show how the former can be frequency-shifted up
to UV frequencies by the scattering from the nonlinear polarisation induced by
the latter. Such UV emission differs from the well-known electric-field-induced
second harmonic (EFISH) one, as it is generated via a phase-insensitive
scattering, rather than a sum- or difference-frequency four-wave-mixing
process
- …