282 research outputs found

    Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward

    Get PDF
    Despite the widely known fact that mantle flow in and around subduction zones produces the development of considerable seismic anisotropy, most P-wave tomography efforts still rely on the assumption of isotropy. In this study, we explore the potential effects of erroneous assumption on tomographic images and explore an alternative approach. We conduct a series of synthetic tomography tests based on a geodynamic simulation of subduction and rollback. The simulation results provide a self-consistent distribution of isotropic (thermal) anomalies and seismic anisotropy which we use to calculate synthetic delay times for a number of realistic and hypothetical event distributions. We find that anisotropy-induced artifacts are abundant and significant for teleseismic, local and mixed event distributions. The occurrence of artifacts is not reduced, and indeed can be exacerbated, by increasing richness in ray-path azimuths and incidence angles. The artifacts that we observe are, in all cases, important enough to significantly impact the interpretation of the images. We test an approach based on prescribing the anisotropy field as an a priori constraint and find that even coarse approximations to the true anisotropy field produce useful results. Using approximate anisotropy, fields can result in reduced RMS misfit to the travel time delays and reduced abundance and severity of imaging artifacts. We propose that the use of anisotropy fields derived from geodynamic modeling and constrained by seismic observables may constitute a viable alternative to isotropic tomography that does not require the inversion for anisotropy parameters in each node of the model

    Intraplate volcanism originating from upwelling hydrous mantle transition zone

    Get PDF
    Most magmatism occurring on Earth is conventionally attributed to passive mantle upwelling at mid-ocean ridges, to slab devolatilization at subduction zones, or to mantle plumes. However, the widespread Cenozoic intraplate volcanism in northeast China1\u20133 and the young petit-spot volcanoes4\u20137 offshore of the Japan Trench cannot readily be associated with any of these mechanisms. In addition, the mantle beneath these types of volcanism is characterized by zones of anomalously low seismic velocity above and below the transition zone8\u201312 (a mantle level located at depths between 410 and 660 kilometres). A comprehensive interpretation of these phenomena is lacking. Here we show that most (or possibly all) of the intraplate and petit-spot volcanism and low-velocity zones around the Japanese subduction zone can be explained by the Cenozoic interaction of the subducting Pacific slab with a hydrous mantle\ua0transition zone. Numerical modelling indicates that 0.2 to 0.3 weight per cent of water dissolved in mantle minerals that are driven out from the transition zone in response to subduction and retreat of a tectonic plate is sufficient to reproduce the observations. This suggests that a critical amount of water may have accumulated in the transition zone around this subduction zone, as well as in others of the Tethyan tectonic belt13 that are characterized by intraplate or petit-spot volcanism and low-velocity zones in the underlying mantle

    On the origin of radial anisotropy near subduction slabs in the mid-mantle

    Get PDF
    Recent seismic studies indicate the presence of seismic anisotropy near subducted slabs in the transition zone and uppermost lower mantle (mid‐mantle). In this study, we investigate the origin of radial anisotropy in the mid‐mantle using 3‐D geodynamic subduction models combined with mantle fabric simulations. These calculations are compared with seismic tomography images to constrain the range of possible causes of the observed anisotropy. We consider three subduction scenarios: (i) slab stagnation at the bottom of the transition zone; (ii) slab trapped in the uppermost lower mantle; and (iii) slab penetration into the deep lower mantle. For each scenario, we consider a range of parameters, including several slip systems of bridgmanite and its grain‐boundary mobility. Modeling of lattice‐preferred orientation shows that the upper transition zone is characterized by fast‐SV radial anisotropy anomalies up to −1.5%. For the stagnating and trapped slab scenarios, the uppermost lower mantle is characterized by two fast‐SH radial anisotropy anomalies of ∌+2% beneath the slab's tip and hinge. On the other hand, the penetrating slab is associated with fast‐SH radial anisotropy anomalies of up to ∌+1.3% down to a depth of 2,000 km. Four possible easy slip systems of bridgmanite lead to a good consistency between the mantle modeling and the seismic tomography images: [100](010), [010](100), [001](100), and urn:x-wiley:ggge:media:ggge22043:ggge22043-math-0001. The anisotropy anomalies obtained from shape‐preferred orientation calculations do not fit seismic tomography images in the mid‐mantle as well as lattice‐preferred orientation calculations, especially for slabs penetrating into the deep lower mantle

    Native larval parasitoids (Hymenoptera) of Frugivorous Tephritoidea (Kiptera) in South Pantanal, Brazil.

    Get PDF
    El objetivo de este estudio es evaluar la incidencia de los parasitoides (Hymenoptera) sobre larvara de tephritidae (moscas de la fruta) y los Lonchacidae frugivoros, en varias especies frutiferas nativas y exoticas en el Pantal sur Mato Grosso do Sul, Brasil. Noventa Y dos especies de frutas de 36 familias y 22 Ăłrdenes fueron evaluadas..

    On the Origin of Radial Anisotropy Near Subducted Slabs in the Midmantle

    Get PDF
    Recent seismic studies indicate the presence of seismic anisotropy near subducted slabs in the transition zone and uppermost lower mantle (mid-mantle). In this study, we investigate the origin of radial anisotropy in the mid-mantle using 3-D geodynamic subduction models combined with mantle fabric simulations. These calculations are compared with seismic tomography images to constrain the range of possible causes of the observed anisotropy. We consider three subduction scenarios: (i) slab stagnation at the bottom of the transition zone; (ii) slab trapped in the uppermost lower mantle; and (iii) slab penetration into the deep lower mantle. For each scenario, we consider a range of parameters, including several slip systems of bridgmanite and its grain-boundary mobility. Modeling of lattice-preferred orientation shows that the upper transition zone is characterized by fast-SV radial anisotropy anomalies up to 121.5%. For the stagnating and trapped slab scenarios, the uppermost lower mantle is characterized by two fast-SH radial anisotropy anomalies of 3c+2% beneath the slab's tip and hinge. On the other hand, the penetrating slab is associated with fast-SH radial anisotropy anomalies of up to 3c+1.3% down to a depth of 2,000\ua0km. Four possible easy slip systems of bridgmanite lead to a good consistency between the mantle modeling and the seismic tomography images: [100](010), [010](100), [001](100), and (Formula presented.). The anisotropy anomalies obtained from shape-preferred orientation calculations do not fit seismic tomography images in the mid-mantle as well as lattice-preferred orientation calculations, especially for slabs penetrating into the deep lower mantle

    Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs

    Get PDF
    Mantle plumes are thought to play a key role in transferring heat from the core\u2013mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji\u2013Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH4VSV) with thermo-mechanical calculations

    Control of Mitochondrial Remodeling by the ATPase Inhibitory Factor 1 Unveils a Pro-survival Relay via OPA1

    Get PDF
    The ubiquitously expressed ATPase inhibitory factor 1 (IF1) is a mitochondrial protein that blocks the reversal of the F1Fo-ATPsynthase, preventing dissipation of cellular ATP and ischemic damage. IF1 suppresses programmed cell death, enhancing tumor invasion and chemoresistance, and is expressed in various types of human cancers. In this study, we examined its effect on mitochondrial redox balance and apoptotic cristae remodeling, finding that, by maintaining ATP levels, IF1 reduces glutathione (GSH) consumption and inactivation of peroxiredoxin 3 (Prx3) during apoptosis. This correlates with inhibition of metallopeptidase OMA1-mediated processing of the pro-fusion dynamin-related protein optic atrophy 1 (OPA1). Stabilization of OPA1 impedes cristae remodeling and completion of apoptosis. Taken together, these data suggest that IF1 acts on both mitochondrial bioenergetics and structure, is involved in mitochondrial signaling in tumor cells, and may underlie their proliferative capacity

    Dried brewers’ grain as a replacement for soybean meal on nutrient digestibility and rumen parameters of cattle

    Get PDF
    The objective of this study was to determine the effect of replacing soybean meal with dried brewers’ grains (DBG) in intake and digestibility of the nutrients and the ruminal parameters of cattle. Four ruminal cannulated Jersey oxen with initial body weight of 662.7 ± 85.5 kg were distributed in a 4x4 Latin square design. The treatments were levels of 0%, 33%, 66% and 100% DBG replacing soybean meal in the diet. Dry matter (DM) and crude protein (CP) intake were not influenced by the treatments. There were linear increases in ether extract (EE), neutral detergent fibre (NDF) and acid detergent fibre (ADF) intakes because of higher levels of these nutrients in diets with DBG. Non-fibre carbohydrate (NFC) and total digestible nutrient (TDN) intake showed a decreasing linear effect. Dry matter and NFC digestibility decreased linearly with rising DBG levels, while EE, CP, NDF and ADF digestibilities were not affected. Ruminal pH was not influenced by DBG levels in the diet. There was a quadratic effect in ammonia nitrogen (NH3-N) concentration in the rumen, with the maximum occurring at a level of 36.7% DGB. The replacement of soybean meal with DBG in cattle diets did not alter DM intake and ruminal pH, but reduced TDN intake.Keywords: Ammonia nitrogen, by-product, digestibility, intake, p
    • 

    corecore