21 research outputs found

    In situ groundwater remediation with bioelectrochemical systems: A critical review and future perspectives

    Get PDF
    Groundwater contamination is an ever-growing environmental issue that has attracted much and undiminished attention for the past half century. Groundwater contamination may originate from both anthropogenic (e.g., hydrocarbons) and natural compounds (e.g., nitrate and arsenic); to tackle the removal of these contaminants, different technologies have been developed and implemented. Recently, bioelectrochemical systems (BES) have emerged as a potential treatment for groundwater contamination, with reported in situ applications that showed promising results. Nitrate and hydrocarbons (toluene, phenanthrene, benzene, BTEX and light PAHs) have been successfully removed, due to the interaction of microbial metabolism with poised electrodes, in addition to physical migration due to the electric field generated in a BES. The selection of proper BESs relies on several factors and problems, such as the complexity of groundwater and subsoil environment, scale-up issues, and energy requirements that need to be accounted for. Modeling efforts could help predict case scenarios and select a proper design and approach, while BES-based biosensing could help monitoring remediation processes. In this review, we critically analyze in situ BES applications for groundwater remediation, focusing in particular on different proposed setups, and we identify and discuss the existing research gaps in the field. Keywords: Bioelectrochemical systems, In situ treatment, Groundwater remediation, Bioelectroremediation, Denitrification, Microbial electrochemical technologie

    Improving carbon management through maximizing hydrolysis and fermentation at water resource recovery facilities

    Get PDF
    Wastewater treatment plants are transitioning from a sole focus on treatment objectives to integrated resource recovery and upcycling. Effective carbon management is critical for upcycling within a water resource recovery facility (WRRF) to produce energy or other usable products, which involves carbon diversion at primary treatment and waste activated sludge (WAS) from biological treatment processes. Many WRRFs are also driven to meet stringent effluent nutrient discharge targets while minimizing energy usage and chemical addition. Nutrient removal systems still rely on biodegradable organic carbon to support denitrification and enhanced biological phosphorus removal (EBPR). Biological nutrient removal not only requires sufficient organic substrate, but also the right type of bioavailable carbon for optimal utilization. The main objective of this pilot fermentation testing was to evaluate the most effective utilization of the range of organic-carbon rich feedstocks within a WRRF. Preliminary results suggest that a 50–50 blend of primary sludge (PS) and return activated sludge (RAS) fermentation leads to highest volatile fatty acid (VFA) yield. PS fermentation resulted in the minimum nutrients release per unit of volatile suspended solids (VSS), which makes it a best suited for biological nutrients removal WRRFs with stringent nitrogen (N) and phosphorus (P) limits. The volatile fatty acids fractions produced from different combinations of RAS and PS can impact the most suitable end use for each sludge type fermentation. PS resulted into higher levels of propionate, which are ideal for selecting phosphate accumulating organisms (PAO) over glycogen-accumulating organisms (GAO). On the other hand, for denitrification, acetate is the preferred substrate, which was most abundant with RAS only fermentation. Our research outcomes will be of value to utilities aiming to integrate the stringent effluent nutrient (N and P) discharge targets with energy and resource recovery

    Post Aerobic Digestion (PAD) is a Solids Sidestream Nutrient Removal Process that Utilizes Native Carbon: Performance and Key Operational Parameters from Two Full-Scale PAD Reactors

    Get PDF
    Nutrient management is a critical issue for Water Resource Recovery Facilities, and sidestream treatment technologies to reduce nutrient loads often focus on liquid sidestreams and require external carbon sources. Post aerobic digestion (PAD), whereby an aerobic digester follows an anaerobic digester, treats a solids stream (i.e., anaerobic digester effluent) to reduce nitrogen loads. Volatile solids reduction occurs in this process with residual organic compounds serving as a native carbon source for denitrification. While this process has been evaluated at the lab-scale, information on operational parameters that affect full-scale performance is limited. We evaluated two separate full-scale PAD reactors to determine process performance and key operational parameters. During healthy operation, ammonia removal was greater than 90%, total inorganic nitrogen removal was greater than 80%, and volatile solids reduction was approximately 10%. Low SRT values of 7–10 days, pH ranges of 6.0–7.5, temperatures from 29–38 °C (85–100 °F), and negative ORP values resulted in good performance

    Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications

    No full text
    : Simultaneous nitrification-denitrification (SND) is an advantageous bioprocess that allows the complete removal of ammonia nitrogen through sequential redox reactions leading to nitrogen gas production. SND can govern nitrogen removal in single-stage biofilm systems, such as the moving bed biofilm reactor and aerobic granular sludge system, as oxygen gradients allow the development of multilayered biofilms including nitrifying and denitrifying bacteria. Environmental and operational conditions can strongly influence SND performance, biofilm development and biochemical pathways. Recent advances have outlined the possibility to reduce the carbon and energy consumption of the process via the "shortcut pathway", and simultaneously remove both N and phosphorus under specific operational conditions, opening new possibilities for wastewater treatment. This work critically reviews the factors influencing SND and its application in biofilm systems from laboratory to full scale. Operational strategies to enhance SND efficiency and hints to reduce nitrous oxide emission and operational costs are provided

    Modelling of sequencing batch reactor operating at various aeration modes

    No full text
    The presented study involved designing a computer model of a sequencing batch reactor (SBR) at laboratory scale. The data pertaining to the technical aspects of the bioreactor and quality indicators of wastewater constituted the input for the employed simulation tool, i.e. GPS-X software package. The results of a simulation involving a 12-hour operation cycle are presented in this work; each cycle included 6 phases: filling, mixing, aeration, settling, decantation and idling (wasting of excess sludge). The simulations were carried out using two different modes of aeration. Concentration of dissolved oxygen (DO) was maintained at constant level of 2 mgO2/L using the PID controller in the first case. On the other hand, variation of DO concentration was employed in the aeration stage of the second variant, which was achieved using appropriately elaborated set point of oxygen concentration, considering the specific intervals in oxygen supply. The changes observed in DO concentration varied from 0.5 to 2.5 mgO2/L. This research proved that the second variant, involving variation of DO concentration, was characterised by reduced levels of pollution indicators in treated sewage, as well as lower consumption of electricity, both of which contributed towards improving the effluent quality and resulted in significant degree of dephosphatation

    Modelling of sequencing batch reactor operating at various aeration modes

    No full text
    The presented study involved designing a computer model of a sequencing batch reactor (SBR) at laboratory scale. The data pertaining to the technical aspects of the bioreactor and quality indicators of wastewater constituted the input for the employed simulation tool, i.e. GPS-X software package. The results of a simulation involving a 12-hour operation cycle are presented in this work; each cycle included 6 phases: filling, mixing, aeration, settling, decantation and idling (wasting of excess sludge). The simulations were carried out using two different modes of aeration. Concentration of dissolved oxygen (DO) was maintained at constant level of 2 mgO2/L using the PID controller in the first case. On the other hand, variation of DO concentration was employed in the aeration stage of the second variant, which was achieved using appropriately elaborated set point of oxygen concentration, considering the specific intervals in oxygen supply. The changes observed in DO concentration varied from 0.5 to 2.5 mgO2/L. This research proved that the second variant, involving variation of DO concentration, was characterised by reduced levels of pollution indicators in treated sewage, as well as lower consumption of electricity, both of which contributed towards improving the effluent quality and resulted in significant degree of dephosphatation

    Lab-scale Data and Microbial Community Structure Suggest Shortcut Nitrogen Removal as the Predominant Nitrogen Removal Mechanism in Post-Aerobic Digestion (PAD)

    No full text
    Implementing an aerobic digestion step after anaerobic digestion, referred to as “post aerobic digestion” (PAD), can remove ammonia without the need for an external carbon source and destroy volatile solids. While this process has been documented at the lab-scale and full-scale, the mechanism for N removal and the corresponding microbial community that carries out this process have not been established. This research gap is important to fill because the nitrogen removal pathway has implications on aeration requirements and carbon demand, that is, short-cut N-removal requires less oxygen and carbon than simultaneous nitrification–denitrification. The aims of this research were to (i) determine if nitrite (NO2−) or nitrate (NO3−) dominates following ammonia removal and (ii) characterize the microbial community from PAD reactors. Here, lab-scale PAD reactors were seeded with biomass from two different full-scale PAD reactors. The lab-scale reactors were fed with biomass from full-scale reactors and operated in batch mode to quantify nitrogen species concentrations (ammonia, NH4+, NO2−, and NO3−) over time. Experimental results revealed that NO2− production rates were several orders of magnitude greater than NO3− production rates. Indeed, nitrite accumulation rate (NAR) was greater than 90% at most temperatures, confirming that shortcut nitrogen removal was the dominant NH4+ removal mechanism in PAD. Microbial community analysis via 16S rRNA sequencing indicated that ammonia oxidizing bacteria (AOB) were much more abundant than nitrite oxidizing bacteria (NOB). Overall, this study suggests that aeration requirements for post-aerobic digestion should be based on NO2− shunt and not complete simultaneous nitrification denitrification

    Hydroxylamine Diffusion Can Enhance N<sub>2</sub>O Emissions in Nitrifying Biofilms: A Modeling Study

    No full text
    Wastewater treatment plants can be significant sources of nitrous oxide (N<sub>2</sub>O), a potent greenhouse gas. However, little is known about N<sub>2</sub>O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N<sub>2</sub>O emissions from nitrifying biofilms. The model included N<sub>2</sub>O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N<sub>2</sub>O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N<sub>2</sub>O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N<sub>2</sub>O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH<sub>2</sub>OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N<sub>2</sub>O emission in biofilms

    Tailoring polyvinyl alcohol-sodium alginate (PVA-SA) hydrogel beads by controlling crosslinking pH and time

    No full text
    Abstract Hydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads. Overall, bead properties were most affected by crosslinking pH. Beads produced at pH 3 and 4 were smaller and contained larger internal cavities, while optical coherence tomography suggested polymer cross-linking density was higher. Optical coherence elastography revealed PVA-SA-BS beads produced at pH 3 and 4 were stiffer than pH 5 beads. Dextran Blue release showed that pH 3-produced beads enabled higher diffusion rates and were more porous. Last, over a 28-day incubation, pH 3 and 4 beads lost more microspheres (as cell proxies) than beads produced at pH 5, while the latter released more polymer material. Overall, this study provides a path forward to tailor PVA-SA-BS hydrogel bead properties towards a broad range of applications, such as chemical, enzymatic, and microbially catalyzed (bio)-processes
    corecore