7,708 research outputs found
Strong Monogamy of Bipartite and Genuine Multipartite Entanglement: The Gaussian Case
We demonstrate the existence of general constraints on distributed quantum
correlations, which impose a trade-off on bipartite and multipartite
entanglement at once. For all N-mode Gaussian states under permutation
invariance, we establish exactly a monogamy inequality, stronger than the
traditional one, that by recursion defines a proper measure of genuine
N-partite entanglement. Strong monogamy holds as well for subsystems of
arbitrary size, and the emerging multipartite entanglement measure is found to
be scale invariant. We unveil its operational connection with the optimal
fidelity of continuous variable teleportation networks.Comment: 4 pages, 2 figures. Final version, published in PR
The spectrum of the Broad Line Region and the high-energy emission of powerful blazars
High-energy emission (from the X-ray through the gamma-ray band) of Flat
Spectrum Radio Quasars is widely associated with the inverse Compton (IC)
scattering of ambient photons, produced either by the accretion disk or by the
Broad Line Region, by high-energy electrons in a relativistic jet. In the
modelling of the IC spectrum one usually adopts a simple black-body
approximation for the external radiation field, though the real shape is
probably more complex. The knowledge of the detailed spectrum of the external
radiation field would allow to better characterize the soft-medium X-ray IC
spectrum, which is crucial to address several issues related to the study of
these sources. Here we present a first step in this direction, calculating the
IC spectra expected by considering a realistic spectrum for the external
radiation energy density produced by the BLR, as calculated with the
photoionization code CLOUDY. We find that, under a wide range of the physical
parameters characterizing the BLR clouds, the IC spectrum calculated with the
black-body approximation reproduces quite well the exact spectrum for energies
above few keV. In the soft energy band, instead, the IC emission calculated
using the BLR emission shows a complex shape, with a moderate excess with
respect to the approximate spectrum, which becomes more important for
decreasing values of the peak frequency of the photoionizing continuum. We also
show that the high-energy spectrum shows a marked steepening, due to the energy
dependence of the scattering cross section, above a characteristic energy of
10-20 GeV, quasi independent on the Lorentz factor of the jet.Comment: 10 pages, 9 figures, accepted for publication in MNRA
Extraction of the beam elastic shape from uncertain FBG strain measurement points
Aim of the present paper is the analysis of the strain along the beam that is equipped with Glass Fibers Reinforced Polymers (GFRP) with an embedded set of optical Fiber Bragg Grating sensors (FBG), in the context of a project to equip with these new structural elements an Italian train bridge. Different problems are attacked, and namely: (i)during the production process [1] it is difficult to locate precisely the FBG along the reinforcement bar, therefore the following question appears: How can we associate the strain measurements to the points along the bar? Is it possible to create a signal analysis procedure such that this correspondence is found?(ii)the beam can be inflected and besides the strain at some points, we would like to recover the elastic shape of the deformed beam that is equipped with the reinforcement bars. Which signal processing do we use to determine the shape of the deformed beam in its inflection plane?(iii)if the beam is spatially inflected, in two orthogonal planes, is it possible to recover the beam spatial elastic shape? Object of the paper is to answer to these questions
Detection of Tiny Mechanical Motion by Means of the Ratchet Effect
We propose a position detection scheme for a nanoelectromechanical resonator
based on the ratchet effect. This scheme has an advantage of being a dc
measurement. We consider a three-junction SQUID where a part of the
superconducting loop can perform mechanical motion. The response of the ratchet
to a dc current is sensitive to the position of the resonator and the effect
can be further enhanced by biasing the SQUID with an ac current. We discuss the
feasibility of the proposed scheme in existing experimental setups.Comment: 8 pages, 9 figure
Direct Nitrous Oxide Emissions From Tropical And Sub-Tropical Agricultural Systems : A Review and Modelling of Emission Factors
We acknowledge the financial support from the CGIAR Research Programs on Climate Change, Agriculture and Food Security (CCAFS). Grant ref. n. P25.Peer reviewedPublisher PD
Long-term impact risk for (101955) 1999 RQ36
The potentially hazardous asteroid (101955) 1999 RQ36 has the possibility of
collision with the Earth in the latter half of the 22nd century, well beyond
the traditional 100-year time horizon for routine impact monitoring. The
probabilities accumulate to a total impact probability of approximately 10E-3,
with a pair of closely related routes to impact in 2182 comprising more than
half of the total. The analysis of impact possibilities so far in the future is
strongly dependent on the action of the Yarkovsky effect, which raises new
challenges in the careful assessment of longer term impact hazards.
Even for asteroids with very precisely determined orbits, a future close
approach to Earth can scatter the possible trajectories to the point that the
problem becomes like that of a newly discovered asteroid with a weakly
determined orbit. If the scattering takes place late enough so that the target
plane uncertainty is dominated by Yarkovsky accelerations then the thermal
properties of the asteroid,which are typically unknown, play a major role in
the impact assessment. In contrast, if the strong planetary interaction takes
place sooner, while the Yarkovsky dispersion is still relatively small compared
to that derived from the measurements, then precise modeling of the
nongravitational acceleration may be unnecessary.Comment: Reviewed figures and some text change
Role of the impurity-potential range in disordered d-wave superconductors
We analyze how the range of disorder affects the localization properties of
quasiparticles in a two-dimensional d-wave superconductor within the standard
non-linear sigma-model approach to disordered systems. We show that for purely
long-range disorder, which only induces intra-node scattering processes, the
approach is free from the ambiguities which often beset the disordered
Dirac-fermion theories, and gives rise to a Wess-Zumino-Novikov-Witten action
leading to vanishing density of states and finite conductivities. We also study
the crossover induced by internode scattering due to a short range component of
the disorder, thus providing a coherent non-linear sigma-model description in
agreement with all the various findings of different approaches.Comment: 38 pages, 1 figur
Reflection confocal nanoscopy using a super-oscillatory lens
A Superoscillatory lens (SOL) is known to produce a sub-diffraction hotspot
which is useful for high-resolution imaging. However, high-energy rings called
sidelobes coexist with the central hotspot. Additionally, SOLs have not yet
been directly used to image reflective objects due to low efficiency and poor
imaging properties. We propose a novel reflection confocal nanoscope which
mitigates these issues by relaying the SOL intensity pattern onto the object
and use conventional optics for detection. We experimentally demonstrate
super-resolution by imaging double bars with 330 nm separation using a 632.8 nm
excitation and a 0.95 NA objective. We also discuss the enhanced contrast
properties of the SOL nanoscope against a laser confocal microscope, and the
degradation of performance while imaging large objects.Comment: 17 pages, 15 figures, supplementary include
- âŠ