30 research outputs found

    Whole Exome Sequencing Suggests Much of Non-BRCA1/BRCA2 Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles

    Get PDF
    The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles

    A PALB2 mutation associated with high risk of breast cancer

    Get PDF
    Introduction: As a group, women who carry germline mutations in partner and localizer of breast cancer 2 susceptibility protein (PALB2) are at increased risk of breast cancer. Little is known about by how much or whether risk differs by mutation or family history, owing to the paucity of studies of cases unselected for family history.Methods: We screened 1,403 case probands for PALB2 mutations in a population-based study of Australian women with invasive breast cancer stratified by age at onset. The age-specific risk of breast cancer was estimated from the cancer histories of first- and second-degree relatives of mutation-carrying probands using a modified segregation analysis that included a polygenic modifier and was conditioned on the carrier case proband. Further screening for PALB2 c.3113G > A (W1038X) was conducted for 779 families with multiple cases of breast cancer ascertained through family cancer clinics in Australia and New Zealand and 764 population-based controls.Results: We found five independent case probands in the population-based sample with the protein-truncating mutation PALB2 c.3113G > A (W1038X); 2 of 695 were diagnosed before age 40 years and 3 of 708 were diagnosed when between ages 40 and 59 years. Both of the two early-onset carrier case probands had very strong family histories of breast cancer. Further testing found that the mutation segregated with breast cancer in these families. No c.3113G > A (W1038X) carriers were found in 764 population-based unaffected controls. The hazard ratio was estimated to be 30.1 (95% confidence interval (CI), 7.5 to 120; P A mutation appears to be associated with substantial risks of breast cancer that are of clinical relevance. © 2010 Southey et al.; licensee BioMed Central Ltd

    Common genetic variants associated with breast cancer and mammographic density measures that predict disease

    No full text
    Educational attainment is associated with many health outcomes, including longevity. It is also known to be substantially heritable. Here, we used data from three large genetic epidemiology cohort studies (Generation Scotland, n = ∼17,000; UK Biobank, n = ∼115,000; and the Estonian Biobank, n = ∼6,000) to test whether education-linked genetic variants can predict lifespan length. We did so by using cohort members' polygenic profile score for education to predict their parents' longevity. Across the three cohorts, meta-analysis showed that a 1 SD higher polygenic education score was associated with ∼2.7% lower mortality risk for both mothers (total ndeaths = 79,702) and ∼2.4% lower risk for fathers (total ndeaths = 97,630). On average, the parents of offspring in the upper third of the polygenic score distribution lived 0.55 y longer compared with those of offspring in the lower third. Overall, these results indicate that the genetic contributions to educational attainment are useful in the prediction of human longevity

    FAN1 variants identified in multiple-case early-onset breast cancer families via exome sequencing: No evidence for association with risk for breast cancer

    No full text
    We are interested in the characterisation of previously undescribed contributions to the heritable component of human cancers. To this end, we applied whole-exome capture, followed by massively parallel sequence analysis to the germline DNA of two greater than third-degree affected relatives from four multiple-case, early-onset breast cancer families. Prior testing for variants in known breast cancer susceptibility, genes in these families did not identify causal mutations. We detected and confirmed two different variants in the DNA damage repair gene FAN1 (R377W, chr15:31197995 C>T and R507H, chr15:31202961 G>A [hg19]) which were not present in dbSNP131. In one family, FAN1 R377W, predicted to be damaging by SIFT and PolyPhen2, was present in all six tested members with cancer (five with breast cancer, one with malignant melanoma). In another family, FAN1 R507H, predicted to be damaging by SIFT but benign by PolyPhen2, was observed in one of two tested members with breast cancer. We genotyped FAN1 R377W and R507H variants across 1417 population-based cases and 1490 unaffected population-based controls (frequency-matched for age). These variants were rare in the Australian population (minor allele frequencies of 0.0064 and 0.010, respectively) and were not associated with breast cancer risk (OR = 0.80, 95% CI[0.39-1.61], P = 0.50 and OR = 0.74, 95% CI[0.41-1.29], P = 0.26, respectively). Analysis of breast cancer risks for relatives of case and control carriers did not find evidence of an increased risk. Despite the biological role of FAN1, the plausibility of its role as a breast cancer predisposition gene, and the possible deleterious nature of the identified variants, these two variants do not appear to be causal for breast cancer. Future studies to extend the genetic analysis of FAN1 will further explore its possible role as a breast cancer susceptibility gene. © 2011 Springer Science+Business Media, LLC

    Explaining variance in the Cumulus mammographic measures that predict breast cancer risk: a twins and sisters study

    No full text
    Background: Mammographic density, the area of the mammographic image that appears white or bright, predicts breast cancer risk. We estimated the proportions of variance explained by questionnaire-measured breast cancer risk factors and by unmeasured residual familial factors. Methods: For 544MZand 339 DZ twin pairs and 1,558 non-twin sisters from 1,564 families, mammographic density was measured using the computer-assisted method Cumulus. We estimated associations using multilevel mixed-effects linear regression and studied familial aspects using a multivariate normal model. Results: The proportions of variance explained by age, body mass index (BMI), and other risk factors, respectively, were 4%, 1%, and4% for dense area; 7%, 14%, and4% for percent dense area; and 7%, 40%, and 1% for nondense area. Associations with dense area and percent dense area were in opposite directions than for nondense area. After adjusting for measured factors, the correlations of dense area with percent dense area and nondense area were 0.84 and -0.46, respectively. The MZ, DZ, and sister pair correlations were 0.59, 0.28, and 0.29 for dense area; 0.57, 0.30, and 0.28 for percent dense area; and 0.56, 0.27, and 0.28 for nondense area (SE = 0.02, 0.04, and 0.03, respectively). Conclusions: Under the classic twin model, 50% to 60% (SE=5%) of the variance of mammographic density measures that predict breast cancer risk are due to undiscovered genetic factors, and the remainder to as yet unknown individual-specific, nongenetic factors. Impact: Much remains to be learnt about the genetic and environmental determinants of mammographic density

    Are ATM mutations 7271T-->G and IVS10-6T-->G really high-risk breast cancer-susceptibility alleles?

    No full text
    Two mutations of the ATM gene were recently suggested to confer breast cancer risks similar to mutations of BRCA1 or BRCA2. Here, we set out to confirm these findings in 961 families with non-BRCA1/BRCA2 breast cancer from diverse geographical regions. We did not detect the ATM 7271T-->G mutation in any family. The ATM IVS10-6T-->G mutation was detected in eight families, which was similar to its frequency among population-matched control individuals (pooled Mantel-Haenszel odds ratio = 1.60; 95% confidence interval = 0.48 to 5.35; P = 0.44). Bayesian analysis of linkage in the ATM IVS10-6T-->G-positive families showed an overall posterior probability of causality for this mutation of 0.008. We conclude that the ATM IVS10-6T-->G mutation does not confer a significantly elevated breast cancer risk and that ATM 7271T-->G is a rare event in familial breast cance

    Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles.

    Get PDF
    The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles
    corecore