25 research outputs found

    Application-tailored Linear Algebra Algorithms: A search-based Approach

    Full text link
    In this paper, we tackle the problem of automatically generating algorithms for linear algebra operations by taking advantage of problem-specific knowledge. In most situations, users possess much more information about the problem at hand than what current libraries and computing environments accept; evidence shows that if properly exploited, such information leads to uncommon/unexpected speedups. We introduce a knowledge-aware linear algebra compiler that allows users to input matrix equations together with properties about the operands and the problem itself; for instance, they can specify that the equation is part of a sequence, and how successive instances are related to one another. The compiler exploits all this information to guide the generation of algorithms, to limit the size of the search space, and to avoid redundant computations. We applied the compiler to equations arising as part of sensitivity and genome studies; the algorithms produced exhibit, respectively, 100- and 1000-fold speedups

    Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies

    Full text link
    In many scientific and engineering applications, one has to solve not one but a sequence of instances of the same problem. Often times, the problems in the sequence are linked in a way that allows intermediate results to be reused. A characteristic example for this class of applications is given by the Genome-Wide Association Studies (GWAS), a widely spread tool in computational biology. GWAS entails the solution of up to trillions (101210^{12}) of correlated generalized least-squares problems, posing a daunting challenge: the performance of petaflops (101510^{15} floating-point operations) over terabytes of data. In this paper, we design an algorithm for performing GWAS on multi-core architectures. This is accomplished in three steps. First, we show how to exploit the relation among successive problems, thus reducing the overall computational complexity. Then, through an analysis of the required data transfers, we identify how to eliminate any overhead due to input/output operations. Finally, we study how to decompose computation into tasks to be distributed among the available cores, to attain high performance and scalability. With our algorithm, a GWAS that currently requires the use of a supercomputer may now be performed in matter of hours on a single multi-core node. The discussion centers around the methodology to develop the algorithm rather than the specific application. We believe the paper contributes valuable guidelines of general applicability for computational scientists on how to develop and optimize numerical algorithms

    Knowledge-Based Automatic Generation of Linear Algebra Algorithms and Code

    Get PDF
    This dissertation focuses on the design and the implementation of domain-specific compilers for linear algebra matrix equations. The development of efficient libraries for such equations, which lie at the heart of most software for scientific computing, is a complex process that requires expertise in a variety of areas, including the application domain, algorithms, numerical analysis and high-performance computing. Moreover, the process involves the collaboration of several people for a considerable amount of time. With our compilers, we aim to relieve the developers from both designing algorithms and writing code, and to generate routines that match or even surpass the performance of those written by human experts.Comment: Dissertatio

    Large-scale linear regression: Development of high-performance routines

    Full text link
    In statistics, series of ordinary least squares problems (OLS) are used to study the linear correlation among sets of variables of interest; in many studies, the number of such variables is at least in the millions, and the corresponding datasets occupy terabytes of disk space. As the availability of large-scale datasets increases regularly, so does the challenge in dealing with them. Indeed, traditional solvers---which rely on the use of black-box" routines optimized for one single OLS---are highly inefficient and fail to provide a viable solution for big-data analyses. As a case study, in this paper we consider a linear regression consisting of two-dimensional grids of related OLS problems that arise in the context of genome-wide association analyses, and give a careful walkthrough for the development of {\sc ols-grid}, a high-performance routine for shared-memory architectures; analogous steps are relevant for tailoring OLS solvers to other applications. In particular, we first illustrate the design of efficient algorithms that exploit the structure of the OLS problems and eliminate redundant computations; then, we show how to effectively deal with datasets that do not fit in main memory; finally, we discuss how to cast the computation in terms of efficient kernels and how to achieve scalability. Importantly, each design decision along the way is justified by simple performance models. {\sc ols-grid} enables the solution of 101110^{11} correlated OLS problems operating on terabytes of data in a matter of hours

    High Performance Solutions for Big-data GWAS

    Full text link
    In order to associate complex traits with genetic polymorphisms, genome-wide association studies process huge datasets involving tens of thousands of individuals genotyped for millions of polymorphisms. When handling these datasets, which exceed the main memory of contemporary computers, one faces two distinct challenges: 1) Millions of polymorphisms and thousands of phenotypes come at the cost of hundreds of gigabytes of data, which can only be kept in secondary storage; 2) the relatedness of the test population is represented by a relationship matrix, which, for large populations, can only fit in the combined main memory of a distributed architecture. In this paper, by using distributed resources such as Cloud or clusters, we address both challenges: The genotype and phenotype data is streamed from secondary storage using a double buffer- ing technique, while the relationship matrix is kept across the main memory of a distributed memory system. With the help of these solutions, we develop separate algorithms for studies involving only one or a multitude of traits. We show that these algorithms sustain high-performance and allow the analysis of enormous datasets.Comment: Submitted to Parallel Computing. arXiv admin note: substantial text overlap with arXiv:1304.227

    Solving Sequences of Generalized Least-Squares Problems on Multi-threaded Architectures

    Full text link
    Generalized linear mixed-effects models in the context of genome-wide association studies (GWAS) represent a formidable computational challenge: the solution of millions of correlated generalized least-squares problems, and the processing of terabytes of data. We present high performance in-core and out-of-core shared-memory algorithms for GWAS: By taking advantage of domain-specific knowledge, exploiting multi-core parallelism, and handling data efficiently, our algorithms attain unequalled performance. When compared to GenABEL, one of the most widely used libraries for GWAS, on a 12-core processor we obtain 50-fold speedups. As a consequence, our routines enable genome studies of unprecedented size

    Accelerating scientific codes by performance and accuracy modeling

    Full text link
    Scientific software is often driven by multiple parameters that affect both accuracy and performance. Since finding the optimal configuration of these parameters is a highly complex task, it extremely common that the software is used suboptimally. In a typical scenario, accuracy requirements are imposed, and attained through suboptimal performance. In this paper, we present a methodology for the automatic selection of parameters for simulation codes, and a corresponding prototype tool. To be amenable to our methodology, the target code must expose the parameters affecting accuracy and performance, and there must be formulas available for error bounds and computational complexity of the underlying methods. As a case study, we consider the particle-particle particle-mesh method (PPPM) from the LAMMPS suite for molecular dynamics, and use our tool to identify configurations of the input parameters that achieve a given accuracy in the shortest execution time. When compared with the configurations suggested by expert users, the parameters selected by our tool yield reductions in the time-to-solution ranging between 10% and 60%. In other words, for the typical scenario where a fixed number of core-hours are granted and simulations of a fixed number of timesteps are to be run, usage of our tool may allow up to twice as many simulations. While we develop our ideas using LAMMPS as computational framework and use the PPPM method for dispersion as case study, the methodology is general and valid for a range of software tools and methods

    Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions

    Get PDF
    Mathematical operators whose transformation rules constitute the building blocks of a multi-linear algebra are widely used in physics and engineering applications where they are very often represented as tensors. In the last century, thanks to the advances in tensor calculus, it was possible to uncover new research fields and make remarkable progress in the existing ones, from electromagnetism to the dynamics of fluids and from the mechanics of rigid bodies to quantum mechanics of many atoms. By now, the formal mathematical and geometrical properties of tensors are well defined and understood; conversely, in the context of scientific and high-performance computing, many tensor- related problems are still open. In this paper, we address the problem of efficiently computing contractions among two tensors of arbitrary dimension by using kernels from the highly optimized BLAS library. In particular, we establish precise conditions to determine if and when GEMM, the kernel for matrix products, can be used. Such conditions take into consideration both the nature of the operation and the storage scheme of the tensors, and induce a classification of the contractions into three groups. For each group, we provide a recipe to guide the users towards the most effective use of BLAS.Comment: 27 Pages, 7 figures and additional tikz generated diagrams. Submitted to Applied Mathematics and Computatio

    Automatic Generation of Efficient Linear Algebra Programs

    Full text link
    The level of abstraction at which application experts reason about linear algebra computations and the level of abstraction used by developers of high-performance numerical linear algebra libraries do not match. The former is conveniently captured by high-level languages and libraries such as Matlab and Eigen, while the latter expresses the kernels included in the BLAS and LAPACK libraries. Unfortunately, the translation from a high-level computation to an efficient sequence of kernels is a task, far from trivial, that requires extensive knowledge of both linear algebra and high-performance computing. Internally, almost all high-level languages and libraries use efficient kernels; however, the translation algorithms are too simplistic and thus lead to a suboptimal use of said kernels, with significant performance losses. In order to both achieve the productivity that comes with high-level languages, and make use of the efficiency of low level kernels, we are developing Linnea, a code generator for linear algebra problems. As input, Linnea takes a high-level description of a linear algebra problem and produces as output an efficient sequence of calls to high-performance kernels. In 25 application problems, the code generated by Linnea always outperforms Matlab, Julia, Eigen and Armadillo, with speedups up to and exceeding 10x
    corecore