7 research outputs found

    Comparative study on the level of bacteriological contamination of automatic teller machines, public toilets and public transport commercial motorcycle crash helmets in Kigali City, Rwanda

    Get PDF
    Background: The environments can be contaminated by infectious agents that constitute a major health hazards as sources of community and hospital-acquired infections due to various activities.Objective: A comparative study on the level of bacteriological  contamination of automatic teller machines (ATMs), public toilets and commercial motorcycle crash helmets were conducted in Kigali city during the period of January to March, 2013.Design: Samples were collected from selected ATMs, public toilets and commercial motorcycle crash helmets surfaces. Micro-organisms identified from these samples were associated to infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital.Setting: Samples from each device and subject were transported to the laboratory where they were analysed for the presence of coliforms and other airborne, human skin and intestinal disease causing microorganisms. Microbiological methods including spread plate techniques and some  biochemical tests were used to partially identify the microorganisms.Subjects: Subjects involved in this study were consented students from University  of Rwanda and Kigali motorcyclists for collections of samples from hands and crash helmets respectively.Results: The following pathogenic bacteria have been found on the devices, Staphylococcus aureus, Staphylococcus epidermis, Streptococcus species, Escherichia coli, Salmonella, Klebsiella, Enterobacter aerogenes, Pseudomonas. The commercial motorcycle crash helmets had the highest level of bacteriological contamination compared to ATMs and public toilets. There was no growth observed on samples collected after treatment from ATMs, public toilets, and commercial motorcycle crash helmets. Attempt to correlate this finding with infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital show that thepresences of some of these infectious pathogens. Conclusion: This study has revealed the ability of these public devices to serve as vehicle of transmission of microorganisms with serious health implications. To improve and ensure the safety of these public devices the use of disinfectants is of high importance on reducing bacteriological load on those public devices. Proper cleaning regimen to sanitise these facilities regularly and public education on their hygienic usage are recommended to reduce the associated risks

    Effect of Acinetobacter sp on Metalaxyl Degradation and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety

    Get PDF
    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC–TOF–MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism

    Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide

    No full text
    Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain-Barre syndrome' and congenital Zika syndrome(2). As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood-brain barrier to reduce viral loads in the brain and protected against Zikavirus-induced blood-brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections

    Introduction to crystallographic refinement of macromolecular atomic models

    No full text
    corecore