32 research outputs found

    Effective Penetration of a Liposomal Formulation of Bleomycin through Ex-Vivo Skin Explants from Two Different Species

    Get PDF
    SIMPLE SUMMARY: Bleomycin, a chemotherapy drug, is currently injected into patients, but this can damage healthy tissues. Ideally, we would like to apply bleomycin directly onto a skin tumour but bleomycin is a big molecule and cannot pass through the skin or directly enter into cancer cells to kill them. Therefore, we need to find new ways of packaging the drug to get it inside cancer cells. Liposomes are small artificial bubbles made of from the same building blocks as our skin and cell membranes that can be filled with pharmaceutical drugs. In this study we propose that liposomes can assist with the delivery of bleomycin by improving penetration through the skin. We are using a new compound called Bleosome, which contains liposomes packed with bleomycin. We found that Bleosome penetrated more through the healthy skin of dogs and horses than bleomycin. These are promising results, indicating that Bleosome may be an effective treatment, with easy application and limited side-effects, to treat skin cancer. ABSTRACT: Bleomycin is a chemotherapy agent that, when administered systemically, can cause severe pulmonary toxicity. Bleosome is a novel formulation of bleomycin encapsulated in ultra-deformable (UD) liposomes that may be applicable as a topical chemotherapy for diseases such as non-melanoma skin cancer. To date, the ability of Bleosome to effectively penetrate through the skin has not been evaluated. In this study, we investigated the ability of Bleosome to penetrate through ex vivo skin explants from dogs and horses. We visualized the penetration of UD liposomes through the skin by transmission electron microscopy. However, to effectively image the drug itself we fluorescently labeled bleomycin prior to encapsulation within liposomes and utilized multiphoton microscopy. We showed that UD liposomes do not penetrate beyond the stratum corneum, whereas bleomycin is released from UD liposomes and can penetrate to the deeper layers of the epidermis. This is the first study to show that Bleosome can effectively penetrate through the skin. We speculate that UD liposomes are penetration enhancers in that UD liposomes carry bleomycin through the outer skin to the stratum corneum and then release the drug, allowing diffusion into the deeper layers. Our results are comparative in dogs and horses and warrant further studies on the efficacy of Bleosome as topical treatment

    Exploitation of the Ugi 5-Center-4-Component Reaction (U-5C-4CR) for the Generation of Diverse Libraries of Polycyclic (Spiro)Compounds

    Get PDF
    An Ugi multicomponent reaction with chiral cyclic amino acids, benzyl isocyanide and cyclic ketones (or acetone) has been exploited as key step for the generation of peptidomimetics. After a straightforward set of elaborations, the peptidomimetics were converted into polycyclic scaffolds displaying two orthogonally protected secondary amines. Libraries of compounds were obtained decorating the molecules through acylation/reductive amination reactions on these functional groups

    A Palette of Minimally Tagged Sucrose Analogues for Real‐Time Raman Imaging of Intracellular Plant Metabolism

    Get PDF
    Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy

    Inserting “OFF-to-ON” BODIPY Tags into Cytokines: A Fluorogenic Interleukin IL-33 for Real-Time Imaging of Immune Cells

    Get PDF
    The essential functions that cytokine/immune cell interactions play in tissue homeostasis and during disease have prompted the molecular design of targeted fluorophores to monitor their activity in real time. Whereas activatable probes for imaging immune-related enzymes are common, many immunological functions are mediated by binding events between cytokines and their cognate receptors that are hard to monitor by live-cell imaging. A prime example is interleukin-33 (IL-33), a key cytokine in innate and adaptive immunity, whose interaction with the ST2 cell-surface receptor results in downstream signaling and activation of NF-ÎșB and AP-1 pathways. In the present work, we have designed a chemical platform to site-specifically introduce OFF-to-ON BODIPY fluorophores into full cytokine proteins and generate the first native-like fluorescent analogues of IL-33. Among different incorporation strategies, chemical aminoacylation followed by bioorthogonal derivatization led to the best labeling results.Importantly, the BODIPY-labeled IL-33 derivatives -unlike IL-33-GFP constructs- exhibited ST2-specific binding and downstream bioactivity profiles comparable to those of the wild-type interleukin. Real-time fluorescence microscopy assays under no wash conditions confirmed the internalization of IL-33 through ST2 receptors and its intracellular trafficking through the endosomal pathway. We envision that the modularity and versatility of our BODIPY labeling platform will facilitate the synthesis of minimally tagged fluorogenic cytokines as the next generation of imaging reagents for real-time visualization of signaling events in live immune cells
    corecore