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Abstract: Fluorescent quinone-based BODIPY hybrids were synthesised and 

characterised by NMR analysis and mass spectrometry. We measured their cytotoxic 

activity against cancer and normal cell lines, performed mechanistic studies by lipid 

peroxidation and determination of reduced (GSH) and oxidized (GSSG) glutathione, 

and imaged their subcellular localisation by confocal microscopy. Cell imaging 

experiments indicated that nor-β-lapachone-based BODIPY derivatives might 

preferentially localise in the lysosomes of cancer cells. These results assert the potential 

of hybrid quinone-BODIPY derivatives as promising prototypes in the search of new 

potent lapachone antitumor drugs. 

Keywords: Quinone; BODIPY; Lapachone; Cancer; Subcellular localization. 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/bmcl/viewRCResults.aspx?pdf=1&docID=32932&rev=0&fileID=828397&msid={7641C387-7008-4FA3-A878-D5CD5C9C3127}


4 

 

1. Introduction 

Over the years, medicinal chemists have been improving several chemical 

strategies for the discovery of new drugs.
1
 For example, enzymatic targets have been 

used in molecular docking studies for computational drug design to predict the chemical 

structure of potential inhibitors.
2
 Looking for new directions, late stage 

functionalization of drug-like molecules arises as a modern and elegant strategy in drug 

discovery programs, as recently reviewed by Cernak and coworkers.
3 

Another strategy 

stems from the inspiration of natural products.
 
Compounds isolated from diverse natural 

sources can be used as starting points to generate novel structures with varied biological 

activities.
4
 As discussed by Newman and Cragg,

5
 natural products still have a major role 

in the design of new antitumor drugs. 

The search for antitumor drugs is a big challenge with multiple questions.
6 

Some 

of the key questions are associated to the mechanism of action of cytotoxic drugs and 

the subcellular organelles where drugs preferentially accumulate. These questions can 

be generally answered by bioimaging experiments
7
 as well as in vitro biological assays.

8
  

Lapachones are naturally occurring naphthoquinones and among the most 

studied quinones due their potent antitumor activity.
9
 Lately, diverse lapachone 

derivatives have been reported as potent cytotoxic drugs against different cancer cell 

lines.
10

 In this regard, advances in the synthesis of lapachones with potent antitumor 

activity have been accomplished via modification of the A- and C-rings,
11

 with recent 

progress being achieved by da Silva Júnior,
12

 Pinto,
13

 Hong,
14

 Ferreira,
15

 Bonifazi,
16

 

among others
17

 (Scheme 1A). 
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As studied by the Boothman group, the mechanism of action of most β-

lapachones is related to the destruction of cancer cells with elevated levels of 

NAD(P)H:quinone oxidoreductase 1 (NQO1).
18,19,20

 Recently, Ohayon and coworkers
21

 

have shed some light on the possibility that β-lapachones might act non-reversibly as 

inhibitors of deubiquitinases. The therapeutic effect of β-lapachones could be also 

related to the oxidation of ubiquitin specific peptidase 2 (USP2), as a likely downstream 

effect of reactive oxygen species (ROS) generation. 

 In this context, unraveling the mechanism of action of antitumor lapachone 

derivatives is a recurring challenge for the scientific community. In the last few years, 

our group has dedicated great efforts to prepare fluorescent lapachones by hybridization 

of the quinoidal moiety with fluorescent compounds, such as the benzothiadiazole 

structure (Scheme 1B).
22

 Fluorescent lapachones allow us to answer critical questions 

related to their mechanism of pharmacological action, including subcellular localization 

studies in live cells.
23

 Recently, our group has described the first fluorescent lapachone-

BODIPY hybrid as well as biological studies, including cytotoxic activity in different 

cancer cell lines and cell imaging experiments (Scheme 1B).
24 

 Herein, we have developed a new chemical platform to prepare new lapachone 

derivatives coupled to the fluorescent BODIPY core, which has excellent photophysical 

properties.
24b

 Lapachones exhibit potent antitumor activity due to their ability to act on 

multiple targets, as we have recently demonstrated.
25

 This family of quinoidal 

derivatives can be divided into α-lapachones (para-quinones) and β-lapachones (ortho-

quinones). We have demonstrated that both α- and β-lapachones display cytotoxic 

activity in cancer cells.
26

 In the present work, we have synthesized a small collection of 

α- and β-lapachone derivatives (Scheme 1C) and evaluated their cytotoxicity in human 
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cancer and non-cancerous cell lines. Furthermore, we have also prepared fluorescent 

BODIPY-lapachones to examine the subcellular localization of lapachone-based 

compounds in cancer cells and any derived effects in their cytotoxic activity. 

 

 

Scheme 1. Overview of lapachone derivatives and the design of quinone-based BODIPY 

hybrids. 
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2. Results and discussion 

The synthesis of the quinone-based BODIPY hybrids 8-11 was accomplished by 

a convergent synthetic route,
24

 using a classical copper(I)-catalyzed alkyne-azide 

cycloaddition (CuAAC) reaction.
27

 We used an alkyne-containing BODIPY and azide-

containing quinones to assemble fluorescent, hybrid quinoidal-BODIPY molecules. We 

started the preparation of quinone-containing BODIPYs by the synthesis of boron-

dipyrromethene with a terminal alkyne for subsequent CuAAC reaction. There are 

numerous reports on synthetic approaches to generate BODIPY scaffold with bespoke 

spectral properties.
28

 Among them, we used the methodology from the Dehaen group 

with minor modifications
30

 for preparing compound 3. With regards to the azides 4-7, 

we initially prepared 3-azido-nor-α-lapachone (4) and 4-azido-α-lapachone (5) from 

lapachol. The methodology for the synthesis of 4 and 5 is well described in the 

literature.
31,32

 Cyclic lapachones were obtained by insertion of bromine atoms and 

nucleophilic substitution with sodium azide to afford the respective clickable analogues 

4 and 5. 

The synthesis of azides 6 and 7 was conducted following methodologies 

described by our group.
25,26,33

 Compound 6 was prepared from C-allyl lawsone upon 

reaction with iodine to obtain the cyclized product, which underwent nucleophilic 

substitution with sodium azide. Finally, the last clickable derivative 7 was obtained 

from nor-lapachol, previously synthesized from lapachol, by the well-established 

Hooker oxidation method.
34

 Nor-lapachol was transformed into the key intermediate 3-

bromo-nor-β-lapachone, which was reacted with sodium azide to render 3-azide-nor-β-

lapachone (7). Once the azido-quinones 4-7 and the alkyne BODIPY 3 were obtained, 
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we readily prepared a small collection of quinone-based BODIPY hybrids (8-11) in 

good yields (Scheme 2). 

 

Scheme 2. Synthesis of quinone-based BODIPY hybrids 8-11. 

 

Lapachone-based BODIPYs 8-11 were evaluated for in vitro cytotoxicity using 

an MTT assay in five human cancer cell lines (i.e. PC3, SF295, MDA-MB435, SW620 

and HCT-116) and two murine non-cancer (L929 and V79) cells. As previously 

reported,
35

 compounds 8-11 were classified according to their cytotoxicity against 

cancer cells as highly active (IC50 < 2 µM), moderately active (2 µM < IC50 < 10 µM), 

or inactive (IC50 > 10 µM). As shown in Table 1, no active para-quinones (8-10) were 
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identified. We have reported α-lapachone derivatives with potent cytotoxicity against 

cancer cells prepared by C-ring modification and insertion of arylamino groups at 

positions C-3 (nor-α-lap) and C-4 (α-lap).
36

 In fact, molecular hybridization
37

 between 

α-lapachones and 1,2,3-triazole groups has been reported as an efficient strategy for 

antitumour compounds.
22

 Herein, the same approach rendered hybrids compounds (8-

10) that were not active against any the tested cancer cell lines, with IC50 values round 8 

µM for all compounds. 

On the other hand, compound 11 exhibited significant cytotoxicity against all 

human cancer cell lines with IC50 values in the low micromolar range (i.e. 0.3 to 0.9 

μM, Table 1). This observation is in line with previous reports of ortho-quinones (i.e. β-

lapachone) being more active than the corresponding para-quinones, such as α-

lapachone.
38

 Moreover, Abreu and collaborators
39

 have shown that the radicals 

generated during the reduction of β-lapachones reduction confer more stability to  

reduced ortho-quinone derivatives when compared to their reduced para-isomers. As a 

result, ortho-quinones, such as the hybrid derivative 11, might present better redox 

cycling ability, which is the ability of a molecule to undergo repeated reduction and 

oxidation, producing more free radicals than compounds 8-10 (para-quinones), which is 

in agreement with the absence of cytotoxicity determined for 8-10. 

 

Table 1. Cytotoxic activity expressed by IC50 (µM, 95% CI) of compounds 8-11 in 

cancer
a
 and normal cells

b
 after 72 h. Values obtained by nonlinear regression from three 

independent experiments and compared to the antitumor drug doxorubicin (DOXO). 

Compd PC3  SF295  MDA-MB435 

8 > 8.10 > 8.10 > 8.10 
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 9 > 7.83 > 7.83 > 7.83 

10 > 8.19 > 8.19 > 8.19 

11 0.38 

(0.35-0.41) 

0.28 

(0.17-0.40) 

0.81 

(0.67-0.91) 

DOXO 0.05 

(0.02-0.07) 

0.45 

(0.41-0.49) 

0.94 

(0.89-0.98) 

Compd SW620 HCT-116  L929  V79 

8 > 8.10 > 8.10 > 8.10 > 8.10 

9 > 7.83 > 7.83 > 7.83 > 7.83 

10 > 8.19 > 8.19 > 8.19 > 8.19 

11 0.68 

(0.60-0.75) 

0.32 

(0.25-0.38) 

0.92 

(0.75-1.00) 

0.65 

(0.51-0.72) 

DOXO 0.29 

(0.26-0.37) 

0.21 

(0.18-0.23) 

0.22 

(0.19-0.24) 

0.25 

(0.21-0.28) 

 

a
PC3 prostate carcinoma, SF295 glioblastoma, MDA-MB435 melanoma, and SW620 

and HCT-116 colon carcinomas cell lines. 
b
Chinese hamster V79 and mouse L929 cells. 

 

The lapachone derivative 11 presented high activity in all the cancer cell lines 

evaluated, showing the strongest effect in human glioblastoma cells (SF295) with an 

IC50 value around 300 nM. This result represents an improvement in the potency of 

previously described lapachone-based BODIPY derivatives.
24

 The results against non-

tumor cells showed that 11 presented IC50 values in V79 and L929 cells in the range 

0.92-0.65 µM. These results indicate that 11 was slightly less cytotoxic against non-

tumor cells, with selectivity indexes (i.e. ratio of cytotoxicities between cancer and 

normal cells) around 3. Whereas further optimization of the lapachone structure would 

be needed to enhance these selectivity indexes, these values are in line with those of 

doxorubicin, a clinically used antitumor drug and one of the most potent and important 

antitumor quinones. 
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Quinones are highly redox active molecules leading to formation of reactive 

oxygen species (ROS), which cause oxidative stress by oxidising lipids, proteins and 

DNA.
40

 Lipid peroxidation is a well-established mechanism of cellular damage, and it 

can be used as an intracellular indicator of oxidative stress. The measurement of 

malondialdehyde (MDA), which is one of the most abundant products from lipid 

peroxidation, is a highly sensitive assay to quantitatively evaluate the formation of lipid 

peroxides in cells. We determined the levels of MDA in three cancer cell lines (prostate, 

glioma and colon) and one non-tumor cell line (murine fibroblast) 24 h after exposure 

of compound 11, and observed that the levels of MDA in all cancer cells as well as 

normal fibroblasts evaluated were significantly higher than in the controls (Figure 1). In 

addition, when comparing the equal concentrations of compound 11 between cell lines 

used in this current study, there is no more sensitive strain than another in relation to the 

extent of byproduct of lipid peroxidation, thiobarbituric acid reactive substances 

(TBARS) formation. Moreover, the pretreatment of the cells with N-acetylcysteine 

(NAC) showed a strong protective effect by preventing lipid peroxidation mainly by 

promoting GSH synthesis by NAC, and by its ROS scavenger ability
41

 highlighting the 

prooxidant mechanism linked to cancer and non-cancer cells death. The role of ROS as 

an important colaborative factor in cell death was well correlated by variation of thiols 

content after tested compound exposure. Oxidative stress burden usually correlates with 

cellular thiol levels or vice versa cellular thiol/disulfide ratio is a well-accepted indicator 

of the redox state of a cell.
42 

Naphthoquinones with higher redox potential showed 

stronger cytotoxicity, presumably because of stronger electrophilicity against thiols and 

because their GSH conjugates are more readily reduced to semiquinones which activate 

oxygen.
43

 To determine whether oxidative stress induced by compound 11 is 

accompanied by changes in total glutathione, the reduced (GSH), oxidized glutathione 
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(GSSG) and GSH/GSSG ratio were measured. After 24 h exposure, compound 11 

significantly reduced (p<0.05) the total content of glutathione of all cell cultures (Table 

2) The decrease in total amount of glutathione after compound 11 exposure was 

accompanied by an increase in GSSG levels (p<0.05) in relation to non-treated cultures. 

Due to observed compound 11 exposure effects on both reduced and oxidized 

glutathione the ratio of GSH/GSSG was decreased. On the other hand, in all cultures 

pre-exposed to NAC before quinone treatment the level of total glutathione was kept 

nearly or slightly above at the control value. 

 

Figure 1. Determination of MDA levels (TBARS assay) in human cancer cells (PC3, 

SF295 and HCT-116) and in non-cancer mouse fibroblasts (L929) after 24 h-incubation 

with compound 11 or 10 µM H2O2 (positive control) in the presence or absence of NAC 
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(5 mM). *p < 0.05 as compared to control by ANOVA followed by Tukey's test. Values 

as means ± s.e.m. for three independent experiments in triplicate. 

 

However, the neutralization of ROS by pretreatment with NAC suggests that an 

alternative mechanism different from ROS generation might be involved in the 

cytotoxic effect of compound 11, as stated in Table 3, in co-treated (GSH-OEt + 

naphthoquinones) cancer and non-cancer cells, GSH-OEt only reduced the sensitivity of 

compound 11 exposure but not abrogated it, which pointed that another mechanism 

differently of ROS generation capacity may be involved in its cytotoxic effects. 

Quinonoid compounds can potentially damage multiple macromolecules in cells, such 

as DNA, resulting in single or double strand breaks or the formation of oxidative 

nucleobases such as 8-oxo-7,8-dihydroguanine, thymine and uracil glycol.
44

 In order to 

assess this possibility, we performed comet assays, which are consistent with the 

reported DNA damage potential attributed to quinonoid molecules.
45

 Compound 11 

caused DNA strand breaks after 24 h exposure in all three cancer cell lines as well as in 

murine fibroblasts. In relation to the antioxidant potential of NAC, it is known that 

NAC can regulate of oxidative stress related gene expression, having an antagonistic 

effect on oxidative injuries.
47

 However, as shown in Figure 2, NAC pretreatment did not 

prevent DNA damage but only resulted in slightly lower levels of fragmented DNA. 

Altogether, these results suggest that the high cytotoxicity of compound 11 is not 

exclusively limited to the generation of ROS generation. The results of ongoing studies 

in our laboratories will be reported in due course. 
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Table 2. Effects of compound 11 on intracellular thiols after 24 h with or without NAC 

pretreatment. 

   Intracellular thiols (µg/mg protein) 

Cell 

line 

Treatment Concentration Total GSH GSSG GSH/GSSG 

PC3 Control
a
 0.1% DMSO 4.23 ± 0.75 3.04 ± 0.51 1.11 ± 0.12 2.69 ± 0.21 

 NAC 5 mM 4.74 ± 0.50 3.53 ± 0.33 1.18 ± 0.21 2.87 ± 0.55 

 11 5 µM 3.53 ± 0.81
*
 1.35 ± 0.10

*
 2.16 ± 0.15

*
 0.37 ± 0.11

*
 

 11 plus NAC
b
 5 µM 4.26 ± 0.55 3.13 ± 0.22 1.07 ± 0.15 2.88 ± 0.33 

       

SF295 Control 0.1% DMSO 4.51 ± 0.83 3.16 ± 0.21 1.31 ± 0.55 2.34 ± 0.56 

 NAC 5 mM 4.86 ± 0.71 3.81± 0.55 1.02 ± 0.10 3.61 ± 0.81 

 11 5 µM 3.44 ± 0.10
*
 1.31 ± 0.16

*
 2.09± 0.21

*
 0.39 ± 0.20

*
 

 11 plus NAC 5 µM 4.72 ± 0.22 3.47 ± 0.55 1.21 ± 0.10 2.82 ± 0.10 

       

HCT-

116 

Control 0.1% DMSO 5.02 ± 0.91 3.74 ± 0.55 1.19 ± 0.37 3.09 ± 0.33 

 NAC 5 mM 5.38 ± 0.45 4.09 ± 0.61 1.23 ± 0.33 3.26 ± 0.21 

 11 5 µM 3.81 ± 0.56
*
 1.78 ± 0.25

*
 2.01 ± 0.22

*
 0.56 ± 0.10

*
 

 11 plus NAC 5 µM 5.12 ± 0.11 3.71 ± 0.25 1.38 ± 0.33 2.63 ± 0.22 

       

L929 Control 0.1% DMSO 4.87 ± 0.25 3.76 ± 0.51 1.05 ± 0.33 3.55 ± 0.51 

 NAC 5 mM 5.43 ± 0.81 3.89 ± 0.75 1.52 ± 0.10 2.52 ± 0.33 

 11 5 µM 3.50 ± 0.15
*
 1.15 ± 0.21

*
 2.27 ± 0.33

*
 0.33 ± 0.10

*
 

 11 plus NAC 5 µM 5.21 ± 0.33 3.89 ± 0.21 1.24 ± 0.25 3.08 ± 0.50 
a 

Negative controls treated with vehicle (0.1% DMSO); 
b
 cells were pretreated for 24 h 

with NAC (5 mM); *p < 0.05 as compared to control by ANOVA followed by Tukey's 

test. Values as means ± s.e.m. for three independent experiments in triplicate. 
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Figure 2. Effects of compound 11 on DNA strand breaks index after 24 h of exposure 

using alkaline comet assay exposure in the presence or absence of NAC (5 mM). *p < 

0.05 as compared to control by ANOVA followed by Tukey's test. Data are presented as 

mean values ± SEMs for three independent experiments in triplicate. 

 

Table 3. IC50 values (μM) for compounds 8-11 after 24 h of exposure in different cells 

in the presence or absence of reduced GSH. 

Compound GSH-OEt PC3 SF295 HCT-116 L929 

 + > 40 > 40 > 40 > 40 

8 - > 40 > 40 > 40 > 40 

 + > 40 > 40 > 40 > 40 

9 - > 40 > 40 > 40 > 40 

 + > 40 > 40 > 40 > 40 

10 - > 40 > 40 > 40 > 40 

 + > 40 > 40 > 40 > 40 
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11 - 4.47 ± 0.73 1.96 ± 0.21 5.28 ± 0.55 5.91 ± 0.10 

 + 15.83 ± 1.15 9.81 ± 0.10 14.25 ± 2.10 12.41 ± 1.75 
a 
Cell-permeable ethyl ester analogue of reduced GSH (15 mM). 

 

Finally, in order to analyse the subcellular localization studies of the lapachone-

BODIPY hybrid 11, we measured its photophysical properties. However, compound 11 

presents a very low fluorescence quantum yield, which limits its capabilities for 

fluorescence cell imaging (Table 4 and Figures S16 and S17 in ESI). As reported for 

other BODIPY dyes,
47b

 the amino group in the position 5 of the BODIPY core can 

cause significant quenching of the fluorophore via photoinduced electron transfer (PeT), 

making it unsuitable for imaging studies. Whereas the quenching effect is highly 

pronounced in compound 11, the extent of PeT quenching is dependent on the structure 

of the quinone-based BODIPY core and the amino substituents. In view of these results, 

we synthesized the BODIPY-alkyne 14 as described in the literature and conjugated it 

to the quinone 7 by CuAAC reaction to render the hybrid BODIPY-quinone 15.
48,49 

We 

measured the photophysical properties of compound 15, and as expected, determined its 

excitation and emission maxima in the green visible range, with high extinction 

coefficients and fluorescence quantum yields (Table 4 and Figure S1 in ESI), being a 

suitable fluorescent probe for live-cell imaging. 



17 

 

 

Scheme 3. Synthesis of the quinone-based BODIPY derivative 15. 

 

With compound 15 in hands, we tested its cytotoxicity in the same five cancer 

cell and non-cancer cell lines. Compound 15 displayed antiproliferative effects only in 

PC3 prostate and HCT-116 colon cell lines with IC50 values equal to 2.39 (2.14-2.65) 

and 2.85 (2.65-3.07) µM, respectively. For cancer cells (SF295, MDA-MB435 and 

SW620) and normal cells (L929 and V79) IC50 values were determined to be > 7.72 

µM. Given the differences in cytotoxicity, we assessed the subcellular localization of 

compound 15 in PC3 cancer cells. Fluorescence confocal microscopy experiments 

revealed the preferential accumulation of 15 in the subcellular lysosomal compartments, 

showing strong co-localization with commercially available LysoTracker Red but not 

with MitoTracker Red dyes (Figure 3). Under these conditions, compound 11 was not 
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detectable under the fluorescence microscope due to its low quantum yield (Figure S18 

in ESI). 

 

Table 4. Photophysical data for compounds 11 and 15. 

Compound λabs.(nm) λabs.(nm) ε (M
-1

cm
-1

) QY
a
 

11 495 530 30,300 0.03 

15 498 511 68,800 0.82 
a 
Determined as relative to fluorescein in basic EtOH (QY: 0.97).

49b
  

 

Mefloquine, a known antimalarial and antitumoral molecule, has been reported 

to accumulate in the subcellular lysosomes of acute myeloid leukemia cells, where it 

exhibits high cytotoxicity due to lysosomal disruption.
50

 This observation led us to 

evaluate the compound 15 in 2 leukemia cancer cell lines (HL-60 and Jurkat cells). 

Notably, 15 presented high activity in these cell lines with IC50 values in the low 

micromolar range [for HL-60 cells, IC50 = 0.92 (0.90-1.05) and for Jurkat cells, IC50 = 

0.94 (0.86-0.98) µM]. Furthermore, because compound 15 showed very low 

cytotoxicity in non-cancer cells (i.e. L929 and V79), its selectivity index was over 8.5 

(i.e. ~7-fold higher than compound 11). Finally, we also assessed the effect of 

compound 15 on intracellular thiols in HL-60 and Jurkat cancer cell lines (Table 5). 

Remarkably, a weaker protective effect was observed for cells pretreated with NAC, 

suggesting a different mechanism of action between both lapachone-BODIPY hybrids. 

The ROS-independent cytotoxic effect of compound 15 is in line with the subcellular 

localization studies and its potential activity in lysosomal disruption of leukemia cancer 

cells. 
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Figure 3. Fluorescence confocal microscopy of PC3 cells upon incubation with 

compound 15 as well as Mitotracker Red (top panel) and LysoTracker Red (bottom 

panel). Images arranged from left to right as: green fluorescence (15), red fluorescence 

(MitoTracker/LysoTracker), merged green/red channels and brightfield images. Scale 

bar: 10 μm. 

 

Table 5. Effects of compound 15 on intracellular thiols after 24 h of cell exposure with 

or without NAC pretreatment. 

   Intracelular thiols (µg/mg protein) 

Cell line Treatment Concentration Total GSH GSSG GSH/GSSG 

HL-60 Control
a
 0.1% DMSO 3.61 ± 0.22 3.01 ± 0.11 0.66 ± 0.17 4.53 ± 0.55 

 NAC
b
 5 mM 3.85 ± 0.81 3.03 ± 0.25 0.75 ± 0.90 4.02 ± 0.61 

 15 5 µM 3.01 ± 

0.44
*
 

0.72 ± 

0.20
*
 

2.18 ± 

0.10
*
 

0.31 ± 0.05
*
 

 15 plus 

NAC
c
 

5 µM 2.83 ± 

0.71
*
 

1.19 ± 

0.10
*
 

1.47 ± 

0.33
*
 

0.76 ± 0.10
*
 

       

Jurkat Control
a
 0.1% DMSO 3.87 ± 0.55 3.02 ± 0.21 0.78 ± 0.33 3.81 ± 0.22 

 NAC
b
 5 mM 4.13 ± 0.25 3.25 ± 0.17 0.81 ± 0.55 3.97 ± 1.17 

 15 5 µM 3.28 ± 

0.60
*
 

0.60 ± 

0.33
*
 

2.57 ± 

0.10
*
 

0.21 ± 0.11
*
 

 15 plus 

NAC
c
 

5 µM 3.11 ± 

0.05
*
 

1.58 ± 

0.55
*
 

1.44 ± 

0.51
*
 

1.08 ± 0.33
*
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a 
Negative controls treated with vehicle (0.1% DMSO); 

b
 cells were pretreated for 24 h 

with NAC (5 mM); *p < 0.05 as compared to control by ANOVA followed by Tukey's 

test. Values as means ± s.e.m. for three independent experiments in triplicate. 

 

3. Conclusions 

We have synthesized and characterized a small collection of novel quinone-

based BODIPY hybrids of the natural products lapachol and lawsone. All compounds 

were evaluated in cancerous and non-cancerous cell lines, and we identified two nor-β-

lapachone hybrids (11 and 15) with potent cytotoxic activity. Mechanistic studies for 

both compounds suggest that the action of compound 11 may be related to the 

generation of reactive oxygen species whereas the fluorescent lapachone 15 may exert 

its cytotoxic action in subcellular lysosomal organelles. This study provides new 

structure-activity relationships in the preparation of biologically active lapachone 

derivatives as well as new insights in the potential mechanism of action for their 

cytotoxic activity. 

 

4. Experimental Section 

4.1. Chemistry 

Melting points were obtained on Thomas Hoover and are uncorrected. Analytical 

grade solvents were used. Column chromatography was performed on silica gel 

(SilicaFlash G60 UltraPure 60-200 µm, 60 Å). 
1
H and 

13
C NMR were recorded at room 

temperature using a Bruker AVANCE DRX400, in the solvents indicated, with TMS as 
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internal reference. Chemical shifts (δ) are given in ppm. Electron-impact mass spectra 

(70 eV) were obtained using a VG Autospec apparatus (Micromass, Manchester, UK). 

Absorption spectra were obtained on a Varian Cary 100 spectrophotometer at room 

temperature in the solvents described above. Fluorescence spectra were obtained on a 

Varian Cary Eclipse spectrofluorimeter with a xenon arc lamp as the light source while 

using an excitation wavelength (λexc) corresponding to a higher absorption band. In all 

experiments, a quartz cuvette was employed with a 1 cm optical path length. Azide 

derivatives 4-7 and BODIPY 14 were synthesized as previously reported in the 

literature.
25,26,30-33 

Structures of the novel compounds 3, 8-11 and 15 were determined by 

1
H and 

13
C NMR. Electrospray ionization mass spectra were also obtained to confirm 

compound identities.
 

 

Procedure for the synthesis of BODIPY 3. To a solution of dichlorinated BODIPY 

(215 mg, 0.639 mmol) in acetonitrile (15 mL) under stirring at room temperature, 

propargylamine (102 µL, 1.6 mmol, 2.5 eq) was added. After 1 hour under stirring at 

room temperature TLC control showed full conversion of the starting material. Solvent 

was evaporated under reduced pressure and, after purification via silica column 

chromatography (C6H14/DCM, 3:2-1:3), the desired product 3 (201 mg, 0.56 mmol, 

89% yield) was obtained. 
1
H NMR (400 MHz, CDCl3) δ: 7.49-7.43 (m, 5H), 6.93 (d, 

1H, J = 4 Hz), 6.49 (br, 1H), 6.39 (d, 1H, J = 4 Hz), 6.28 (d, 1H, J = 4 Hz), 6.21 (d, 1H, 

J = 4 Hz), 4.17 (dd, 2H, J = 2.4 and 3.6 Hz), 2.38 (t, 1H, J = 2.4 Hz). 
13

C NMR (100 

MHz, CDCl3) δ: 169.3, 135.9, 133.7, 133.2, 132.0, 131.2, 130.3, 129.5, 128.3, 121.6, 

113.2, 110.9, 78.8, 34.1. EI/MS (m/z) [M+H]
+
: 356.0. Calcd for [C18H14BClF2N3]

+
: 

356.0. 
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General procedure to prepare quinone-based BODIPY hybrids 8-11 and 15. In a 

round bottom flask, the respective azide derivatives (0.5 mmol), alkyne BODIPYs (0.6 

mmol), and 10 mL of CH3CN were added. The reaction mixture was stirred until 

complete solubilization of the reagents after which, CuI (10% per mole) was added. The 

system was kept under inert atmosphere (Ar) until complete consumption of BODIPY 

and monitored by TLC until its completion. The solvent from the crude was evaporated 

under reduced pressure and it was purified by column chromatography on silica-gel, 

using eluents with an increasing polarity gradient mixture of hexane and ethyl acetate. 

 

Nor-α-lapachone-based BODIPY (8). Compound 8 was obtained as a brown solid 

after 18 h of reaction (258 mg, 83% yield); mp 173-175 °C. 
1
H NMR (400 MHz, 

CDCl3) δ: 8.16-8.14 (m, 1H), 8.05-8.03 (m, 1H), 7.75-7.73 (m, 2H), 7.59 (s, 1H), 7.48-

7.44 (m, 5H), 6.86 (d, 1H, J = 4.8 Hz), 6.82 (sl, 1H), 6.35 (d, 1H, J = 3.8 Hz), 6.29 (d, 

1H, J = 4.8 Hz), 6.18 (d, 1H, J = 3.8 Hz), 6.00 (s, 1H), 4.73 (d, 2H, J = 6.1 Hz), 1.74 (s, 

3H), 1.16 (s, 3H). 
13

C NMR (100 MHz, CDCl3) δ: 180.9, 179.8, 177.8, 144.6, 135.9, 

134.8, 135.9, 134.8, 133.6, 133.5, 131.9, 131.7, 130.5, 130.3, 129.3, 128.2, 127.2, 

126.8, 126.5, 121.9, 121.1, 118.1, 94.3, 67.8, 40.4, 27.5, 21.0. EI/HRMS (m/z) 

[M+Na]
+
: 647.1551. Calcd for [C32H24BClF2N6O3Na]

+
: 647.1557. 

 

α-Lapachone-based BODIPY (9). Compound 9 was obtained as a brown solid after 18 

h of reaction (229 mg, 72% yield); mp 171-173 °C. 
1
H NMR (400 MHz, CDCl3) δ: 

8.12-8.10 (m, 1H), 7.95-7.93 (m, 1H), 7.69-7.67 (m, 3H), 7.47-7.42 (m, 5H), 6.87 (d, 
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1H, J = 4.4 Hz), 6.81 (sl, 1H), 6.35-6.32 (m, 2H), 6.17 (d, 1H, J = 3.6 Hz), 5.78 (t, 1H, J 

= 6.6 Hz), 4.74 (d, 2H, J = 6 Hz), 2.72 (dd, 1H, J = 14.6 and 6.8 Hz), 2.40 (dd, 1H, J = 

14.6 and 6.8 Hz), 1.50 (s, 3H), 1.35 (s, 3H). 
13

C NMR (100 MHz, CDCl3) δ: 182.8, 

179.3, 161.9, 156.2, 143.8, 135.9, 134.5, 133.7, 133.5, 132.7, 131.9, 131.8, 131.1, 

131.3, 129.4, 128.3, 126.7, 126.4, 122.3, 120.9, 115.1, 112.9, 111.2, 79.3, 50.2, 40.5, 

39.3, 26.9, 26.2. EI/HRMS (m/z) [M+Na]
+
: 661.1704. Calcd for 

[C33H26BClF2N6O3Na]
+
: 661.1714. 

 

Nor-α-lapachone-based BODIPY derivative (10). Compound 10 was obtained as a 

brown solid after 18 h of reaction (268 mg, 88% yield); mp 165-168 °C. 
1
H NMR (400 

MHz, CDCl3) δ: 7.94 (d, 1H, J = 7.6 Hz), 7.91 (d, 1H, J = 7.6 Hz), 7.84 (s, 1H), 7.61 (t, 

1H, J = 7.6 Hz), 7.55 (t, 1H, J = 7.6 Hz), 7.48-7.45 (m, 5H), 7.09 (sl, 1H), 6.85 (d, 1H, J 

= 4,8 Hz), 6.41 (d, 1H, J = 4.8 Hz), 6.33 (d, 1H, J = 4 Hz), 6.16 (d, 1H, J = 4.0 Hz), 

5.40 (m, 1H), 4.82 (d, 2H, J = 5.2 Hz), 4.78 (d, 2H, J = 6.4 Hz), 3.41-3.34 (m, 1H), 

3.04-2.97 (m, 1H). 
13

C NMR (100 MHz, CDCl3) δ: 181.7, 177.3, 161.9, 159.1, 144.7, 

135.9, 134.2, 133.7, 133.4, 133.1, 132.6, 132.2, 131.9, 131.3, 130.3, 129.8, 129.3, 

128.3, 126.2, 125.2, 124.2, 123.7, 120.4, 112.8, 111.4, 83.2, 53.0, 40.0, 30.2. EI/HRMS 

(m/z) [M+Na]
+
: 633.1386. Calcd for [C31H22BClF2N6O3Na]

+
: 633.1401. 

 

Nor-β-lapachone-based BODIPY (11). Compound 11 was obtained as a brown solid 

after 48 h of reaction (227 mg, 73% yield); mp 190-193  °C. 
1
H NMR (400 MHz, 

CDCl3) δ: 7.96 (d, 1H, J = 7.2 Hz), 7.83-7.79 (m, 2H), 7.73 (t, 1H, J = 8.9 Hz), 7.65 (t, 

1H, J = 7.8 Hz), 7.46-7.42 (m, 5H), 6.89 (sl, 1H), 6.84 (d, 1H, J = 4 Hz), 6.34 (sl, 2H), 
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6.14 (sl, 1H), 6.00 (sl, 1H), 4.74 (d, 2H, J = 4.4 Hz), 1.77 (s, 3H), 1.17 (s, 3H). 
13

C 

NMR (100 MHz, CDCl3) δ: 180.2, 174.9, 171.4, 161.8, 144.3, 136.0, 134.6, 133.7, 

133.2, 132.4, 131.9, 131.6, 130.3, 120.8, 129.3, 128.3, 126.8, 125.6, 122.3, 120.5, 

112.8, 111.4, 111.4, 95.9, 67.1, 40.4, 27.7, 21.2. EI/HRMS (m/z) [M+Na]
+
: 647.1521. 

Calcd for [C32H24BClF2N6O3Na]
+
: 647.1557. 

 

Fluorescent nor-β-lapachone-based BODIPY (15). Compound 15 was obtained as a 

red solid after 48 h of reaction (226 mg, 70% yield); mp 176-179 °C. 
1
H NMR (400 

MHz, CDCl3) δ: 8.21 (d, 1H, J = 7.2 Hz), 7.83 (t, 1H, J = 7.2 Hz), 7.79-7.73 (m, 2H), 

7.64 (s, 1H), 7.18 (d, 2H, J = 8.0 Hz), 7.09 (d, 2H, J = 8.0 Hz), 6.03 (s, 1H), 5.98 (s, 

2H), 5.24 (d, 2H, J = 4.0 Hz), 2.56 (s, 6H), 1.80 (s, 3H), 1.41 (s, 6H), 1.22 (s, 3H). 
13

C 

NMR (100 MHz, CDCl3) δ: 180.1, 174.6, 171.4, 158.9, 155.5, 143.9, 143.2, 141.7, 

135.0, 133.6, 131.9, 131.7, 130.2, 129.4, 127.9, 126.7, 125.7, 122.5, 121.3, 115.6, 

111.2, 96.0, 67.2, 62.3, 27.8, 21.3, 14.6. EI/HRMS (m/z) [M+Na]
+
: 670.2401. Calcd for 

[C36H32BF2N5O4Na]
+
: 670.2413. 

 

4.2 Biological Data 

Inhibition of cell proliferation – MTT tests. Cell growth was quantified by the ability 

of living cells to reduce the yellow dye MTT to a purple formazan product. Cytotoxicity 

was checked on different human cancer cell lines (HL-60 and Jurkat leukemias, PC3 

prostate carcinoma, SF295 glioblastoma, MDA-MB435 melanoma, SW620 and HCT-

116 colon carcinomas cell lines), and two non-cancer murine fibroblasts (Chinese 

hamster V79 and mouse L929 cells). All cancer cells were obtained from the National 
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Cancer Institute in Bethesda, MD, USA. The V79 cells were kindly provided by Dr. 

Henriques JAP (Federal University of Rio Grande do Sul, Porto Alegre, Brazil), and 

L929 cells were purchased from Rio de Janeiro Cell Bank (BCRJ, Rio de Janeiro, 

Brazil). For the experiments, cells were plated in 96-well plates (0.7 x 10
5
 to 0.3 x 10

6
 

cells/ well for cancer cells and 0.5 x 10
5
 cells/well for murine fibroblasts), and tested 

compounds, dissolved in DMSO (0.1%), was then added to each well, followed by 

incubation for 24 h at concentrantions ranging from 0.04 to 40.92 μM or 72 h at 

concentrantions ranging from 0.04 to 8.19 μM. In some experiments, the contribution of 

ROS to the cytotoxicity of tested quinones was assessed by cells co-treated with GSH-

OEt (15 mM). Our preliminary experiments showed that the ethyl ester of GSH was not 

cytotoxic and provided a more efficient protection than GSH at the same concentration 

(15 mM). In fact, GSH is not readily transported into most cells. Thus, in the MTT 

experiments, we used GSH ethyl ester, which is more lipophilic, readily taken up by 

cells and hydrolyzed to GSH by cellular nonspecific esterases.
51

 Afterward, the plates 

were centrifuged and the medium replaced by fresh medium (150 μL) containing 0.5 

mg/mL MTT. Three hours later, the MTT formazan product was dissolved in 150 µL 

DMSO, and absorbance was measured using a multiplate reader (Spectra Count, 

Packard, Ontario, Canada). Drug effect was quantified as the percentage of control 

absorbance of the reduced dye at 595 nm. Doxorubicin (0.001-1.06 μM) was used as 

positive control. Experiments were carried out in triplicate and repeated at least three 

times. 

 

Lipid peroxidation (TBARS assay). The extent of tested compound-induced lipid 

peroxidation was determined by the reaction of thiobarbituric acid (TBA) with 
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malondialdehyde (MDA), a product formed by lipid peroxidation.
52

 The assays were 

performed according to Salgo and Pryor,
53

 with minor modifications. Cells were 

incubated with compound for 24 h, and after lysis with Tris-HCl (15 mM for 1 h). Two 

milliliters 0.4 mg/mL trichloroacetic acid, 0.25 M HCl were added to the lysate, which 

was then incubated with 6.7 mg/mL TBA for 15 min at 100 ºC. The mixture was 

centrifuged at 750 x g for 10 min. As TBA reacts with other products of lipid 

peroxidation in addition to MDA, results are expressed in terms of thiobarbituric 

reactive species (TBARS), which are determined by absorbance at 532 nm. Hydrolyzed 

1,1,3,3-tetramethoxypropan was used as the standard. The results were normalized by 

protein content.
54 

In order to evaluate the contribution of ROS on lipid peroxidation 

extent, cells were pre-treated for 24 h with NAC (5 mM), and after they were exposed to 

tested compound during 24 h. H2O2 (10 μM) was used as positive control. All 

experiments were performed in triplicate in three independent experiments. 

 

Determination of reduced (GSH), oxidized (GSSG) glutathione, and GSG/GSSG 

ratios. Total glutathione (GSH + GSSG) was determined by spectrophotometer 

determination of 5-thio-2-nitrobenzoate (TNB), which was produced from DTNB, 

according to Akerboom and Sies
55

 with minor modification. Briefly, cells were exposed 

with tested compound (5 μM) during 24 h. Then, cells were washed with ice-cold PBS, 

and resuspended in 0.1 sodium phosphate (5 mM EDTA, pH 8.0), and sonicated to 

obtain the cell homogenate. An equal volume of 2 M HClO4-4 mM EDTA was added to 

the cell extract, and the precipitated proteins were sedimented by centrifugation at 8000 

x g for 15 min at 4 ºC. The supernatant was neutralized with 2 M KOH, and the 

insoluble residue was removed by centrifugation under the same conditions. For the 
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spectrophotometric determination 910 μL of the cell extract supernatant or of the 

standard glutathione solution, in the same phosphate-EDTA buffer, were mixed with 50 

μL of 4 mg/mL NADPH in 0.5% (w/v) NaHCO3, 20 μL of 6 U/mL glutathione 

reductase in phosphate-EDTA buffer, and 20 μL of 1.5 mg/mL DTNB in 0.5% 

NaHCO3. The increase in absorbance was measured at 412 nm. The results were 

normalized by protein content.
54

 Total glutathione content was determined as μg/mg 

protein. For GSSG determination, 4-vinypyridine was added to a final concentration of 

0.1% (v/v), and then incubated for 1 h at room temperature. At this concentration, 4-

vinypyridine is able to react with all GSH without interfering with GSSG determination. 

GSH was determined based on the total glutathione and GSSG concentration results. In 

order to evaluate the contribution of ROS on glutathione modulation content, cells were 

pre-treated for 24 h with NAC (5 mM), and after they were exposed to tested compound 

during 24 h. All experiments were performed in triplicate in three independent 

experiments. 

 

Alkaline comet assay (Single cell gel electrophoresis). The alkaline comet assay was 

performed as described by Singh et al.
56

 with minor modifications,
57

 and following the 

recommendations of the International Workshop on Genotoxicity Test Procedures.
58 

At 

the end of the treatment with 11 (2.5, 5, and 10 µM during 24 h) exposure in the 

presence or absence of 5 mM NAC (pre-treated for 24 h), cells were washed with ice-

cold PBS, detached with 100 μL trypsin (0.15%) and resuspended in complete RPMI 

medium. Next, 20 μL of cell suspension (~10
6
 cells/mL) were mixed with 0.75% low 

melting point agarose and immediately spread onto a glass microscope slide precoated 

with a layer of 1% normal melting point agarose. The agarose was allowed to set at 4˚C 
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for 5 min. The slides were incubated in ice-cold lysis solution (2.5 M NaCl, 10mM Tris, 

100mM EDTA, 1% Triton X-100 and 10% DMSO, pH 10.0) at 4˚C for a minimum of 1 

h to remove cellular proteins, leaving the DNA as “nucleoids.” After the lysis 

procedure, the slides were placed on a horizontal electrophoresis unit. The unit was 

filled with fresh buffer (300 mM NaOH and 1mM EDTA, pH>13.0) to cover the slides 

for 20 min at 4˚C to allow DNA unwinding and expression of alkali-labile sites. 

Electrophoresis was conducted for 20 min at 25 V and 300 mA (0.86 V/cm). After 

electrophoresis, the slides were neutralized (0.4 M Tris, pH 7.5), stained with ethidium 

bromide (20 μg/mL) and analyzed using a fluorescence microscope. All the above steps 

were conducted under yellow light or in the dark to prevent additional DNA damage. 

Images of 100 randomly selected cells (50 cells from each of two replicate slides) were 

analyzed for each concentration of test substance. Cells were scored visually and 

assigned to one of five classes, according to tail size (from undamaged-0, to maximally 

damaged-4), and a DNA strand breaks index value was calculated for each sample of 

cells. DNA strand breaks index thus ranged from 0 (completely undamaged: 100 cells x 

0) to 400 (with maximum damage: 100 cells x 4).
59 

 

Spectral characterization. Spectral characterization of BODIPY-prodrug conjugates. 

Spectroscopic and quantum yield data were recorded on a Synergy HT 

spectrophotometer (Biotek). Compounds were dissolved at the indicated concentrations 

and spectra were recorded at r.t. Spectra are represented as means from at least two 

independent experiments with n = 3. Quantum yields were calculated by measuring the 

integrated emission area of the fluorescence spectra and comparing it to the area 

measured for fluorescein in basic EtOH. 
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Fluorescence confocal microscopy. PC3 cells were grown in DMEM cell culture 

media supplemented with 10% FBS, antibiotics (100 U mL
-1

 penicillin and 100 mg mL
-

1
 streptomycin) and 2 mM L-glutamine in a humidified atmosphere at 37 °C with 5% 

CO2. Cells were plated on glass chamber slides Lab-Tek™ II (Nunc), incubated with 

compounds 11 or 15 (5 μM) with or without Tracker dyes at 37 °C for 10 min. Cells 

were imaged in phenol red-free DMEM under a Zeiss LSM 510 META fluorescence 

confocal microscope equipped with a live cell imaging stage. Fluorescence and 

brightfield images were acquired using a 40X oil objective. Fluorophores were excited 

with 488 nm (compound 15) or 543 nm (Lysotracker Red, Mititarcker Red) lasers. All 

images were analysed and processed with ImageJ. 
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