62 research outputs found

    Pseudohypoaldosteronism type 1 due to novel variants of SCNN1B gene.

    Get PDF
    UnlabelledAutosomal recessive pseudohypoaldosteronism type 1 (PHA1) is a rare disorder characterized by sodium wasting, failure to thrive, hyperkalemia, hypovolemia and metabolic acidosis. It is due to mutations in the amiloride-sensitive epithelial sodium channel (ENaC) and is characterized by diminished response to aldosterone. Patients may present with life-threatening hyperkalemia, which must be recognized and appropriately treated. A 32-year-old female was referred to the National Institutes of Health (NIH) for evaluation of hyperkalemia and muscle pain. Her condition started in the second week of life, when she was brought to an outside hospital lethargic and unresponsive. At that time, she was hypovolemic, hyperkalemic and acidotic, and was eventually treated with sodium bicarbonate and potassium chelation. At the time of the presentation to the NIH, her laboratory evaluation revealed serum potassium 5.1 mmol/l (reference range: 3.4-5.1 mmol/l), aldosterone 2800 ng/dl (reference range: ≤21 ng/dl) and plasma renin activity 90 ng/ml/h (reference range: 0.6-4.3 ng/ml per h). Diagnosis of PHA1 was suspected. Sequencing of the SCNN1B gene, which codes for ENaC, revealed that the patient is a compound heterozygote for two novel variants (c.1288delC and c.1466+1 G>A), confirming the suspected diagnosis of PHA1. In conclusion, we report a patient with novel variants of the SCNN1B gene causing PHA1 with persistent, symptomatic hyperkalemia.Learning pointsPHA1 is a rare genetic condition, causing functional abnormalities of the amiloride-sensitive ENaC.PHA1 was caused by previously unreported SCNN1B gene mutations (c.1288delC and c.1466+1 G>A).Early recognition of this condition and adherence to symptomatic therapy is important, as the electrolyte abnormalities found may lead to severe dehydration, cardiac arrhythmias and even death.High doses of sodium polystyrene sulfonate, sodium chloride and sodium bicarbonate are required for symptomatic treatment

    Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing's disease.

    Get PDF
    The CABLES1 cell cycle regulator participates in the adrenal-pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing's disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene

    Is there a common cause for paediatric Cushing’s disease?

    Get PDF
    Introduction: According to recent literature, somatic mutations in the ubiquitin-specific protease 8 (USP8) gene are the most common changes in patients with Cushing’s disease (CD). Data on the frequency of these mutations in the paediatric population are limited. The aim of the presented study was to determine the frequency of the USP8 gene mutations in a group of paediatric patients with CD treated at the Children’s Memorial Health Institute (CMHI). Material and methods: Eighteen patients (nine females) with CD were treated at CMHI, Warsaw, Poland between 1993 and 2019. All patients underwent transsphenoidal surgery (TSS) as a primary treatment for CD. The average age of all patients at TSS was 13.10 years (5.42–17.25). DNA was extracted from formalin-fixed paraffin-embedded resected tumour tissue. Sanger sequencing was performed on DNA sequence corresponding to the exon 14 of USP8 gene. Results: The mean age at diagnosis of CD was 13.08 years, and the average duration of symptoms before diagnosis was 2.96 years. All patients were operated at CMHI by the same neurosurgeon. Fifteen out of 18 patients (83.33%) had initial biochemical remission after a single TSS procedure (post-operative serum cortisol < 1.8 μg/dL). The result of genetic testing was negative for all samples at the hotspot area of the USP8 gene. Conclusion: The current retrospective study demonstrates that mutations in the USP8 gene may not be as common a cause of paediatric Cushing’s disease, as previously reported

    Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism

    Get PDF
    X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.The work was supported by the following funding sources: Fondazione Telethon, Italy grant no. GGP20130 (to G.T.); Society for Endocrinology equipment grant (to G.T.); Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH) Research project Z01-HD008920 (to C.A.S., supporting G.T., F.R.F.); Fonds d’Investissement pour la Recherche Scientifique (FIRS) of the Centre Hospitalier Universitaire de Liège (to A.F.D. and A.B.); the JABBS Foundation, UK (to A.B.); and Novo Nordisk Belgium Educational Grant, Belgium (to A.F.D. and A.B.). M.F. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#800396) and a Juan de la Cierva-Formación fellowship from the Spanish Ministry of Science and Innovation (FJC2018-038233-I). G.T. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#843843). A.F.D. and D.A. were supported by Action de Recherche Concertée (ARC) Grant 17/21-01 from Liège University. D.A. was supported by grants from Télévie (7461117 F, 7454719 F) and the Léon Fredericq Foundation, Belgium

    Analysis of the association of an MMP1 promoter polymorphism and transcript levels with chronic periodontitis and end-stage renal disease in a Brazilian population

    Get PDF
    Chronic periodontitis (CP) and end-stage renal disease (ESRD) are complex inflammatory conditions. Higher levels of MMP-1 were found in fluids and gingival tissues from CP patients and in the blood and tissues from ESRD patients. MMP1-1607 (1G/2G) is a functional polymorphism, as it alters MMP-1 expression. Objective: The aim of this study was to investigate the association of the MMP1-1607 (1G/2G) polymorphism with CP and ESRD and evaluate differences in transcript levels between the groups. Design: A total of 254 individuals were divided into four groups: Group 1, without CP and without chronic kidney disease (CKD) (n = 67); Group 2, with CP and without CKD (n = 60); Group 3, without CP and with CKD stages (ESRD) (n = 52), and Group 4, with CP and with ESRD (n = 75). The MMP1-1607 polymorphism was analysed by PCR-RFLP. MMP1 gene transcripts from gingival tissues were analysed by real-time PCR. Results: No association was found between the MMP1-1607 polymorphism and CP or ESRD. Increased levels of MMP1 transcripts were observed in CP patients with or without ESRD. No differences were observed in the transcript levels according to the genotypes. Conclusion: It was concluded that the MMP1-1607 polymorphism was not associated with either CP or ESRD. However, higher levels of MMP1 gene transcripts were found at gingival sites of CP in patients both with and without ESRD. (C) 2012 Elsevier Ltd. All rights reserved.Araucaria Support Foundation for Scientific and Technological Development of Parana [5856]National Counsel for Technological and Scientific Development (CNPq) [475770/2004-8

    Analysis of the association of an MMP1 promoter polymorphism and transcript levels with chronic periodontitis and end-stage renal disease in a Brazilian population

    Get PDF
    Chronic periodontitis (CP) and end-stage renal disease (ESRD) are complex inflammatory conditions. Higher levels of MMP-1 were found in fluids and gingival tissues from CP patients and in the blood and tissues from ESRD patients. MMP1-1607 (1G/2G) is a functional polymorphism, as it alters MMP-1 expression. Objective: The aim of this study was to investigate the association of the MMP1-1607 (1G/2G) polymorphism with CP and ESRD and evaluate differences in transcript levels between the groups. Design: A total of 254 individuals were divided into four groups: Group 1, without CP and without chronic kidney disease (CKD) (n = 67); Group 2, with CP and without CKD (n = 60); Group 3, without CP and with CKD stages (ESRD) (n = 52), and Group 4, with CP and with ESRD (n = 75). The MMP1-1607 polymorphism was analysed by PCR-RFLP. MMP1 gene transcripts from gingival tissues were analysed by real-time PCR. Results: No association was found between the MMP1-1607 polymorphism and CP or ESRD. Increased levels of MMP1 transcripts were observed in CP patients with or without ESRD. No differences were observed in the transcript levels according to the genotypes. Conclusion: It was concluded that the MMP1-1607 polymorphism was not associated with either CP or ESRD. However, higher levels of MMP1 gene transcripts were found at gingival sites of CP in patients both with and without ESRD. (C) 2012 Elsevier Ltd. All rights reserved.Araucaria Support Foundation for Scientific and Technological Development of Parana [5856]National Counsel for Technological and Scientific Development (CNPq) [475770/2004-8

    Rare Germline DICER1 Variants in Pediatric Patients With Cushing's Disease: What Is Their Role?

    Get PDF
    Context: The DICER1 syndrome is a multiple neoplasia disorder caused by germline mutations in the DICER1 gene. In DICER1 patients, aggressive congenital pituitary tumors lead to neonatal Cushing's disease (CD). The role of DICER1 in other corticotropinomas, however, remains unknown. Objective: To perform a comprehensive screening for DICER1 variants in a large cohort of CD patients, and to analyze their possible contribution to the phenotype. Design, setting, patients, and interventions: We included 192CD cases: ten young-onset (age <30 years at diagnosis) patients were studied using a next generation sequencing panel, and 182 patients (170 pediatric and 12 adults) were screened via whole-exome sequencing. In seven cases, tumor samples were analyzed by Sanger sequencing. Results: Rare germline DICER1 variants were found in seven pediatric patients with no other known disease-associated germline defects or somatic DICER1 second hits. By immunohistochemistry, DICER1 showed nuclear localization in 5/6 patients. Variant transmission from one of the parents was confirmed in 5/7 cases. One patient had a multinodular goiter; another had a family history of melanoma; no other patients had a history of neoplasms. Conclusions: Our findings suggest that DICER1 gene variants may contribute to the pathogenesis of non-syndromic corticotropinomas. Clarifying whether DICER1 loss-of-function is disease-causative or a mere disease-modifier in this setting, requires further studies.This work was supported by the Intramural Research Programs of Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and National Institute for Neurological Diseases and Stroke, National Institutes of Health, a grant from the Basque Department of Education (IT795-13), a grant from the Basque Department of Health (GV2018111082), the Merck Serono Research award from Fundacion Salud 2000 (15-EP-004) and the Jose Igea 2018 grant, sponsored by Pfizer, from Fundacion Sociedad Espanola de Endocrinologia Pediatrica (SEEP)
    corecore