28 research outputs found

    Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review

    Get PDF
    AbstractThe inert nature of most commercial polymers and nanomaterials results in limitations of applications in various industrial fields. This can be solved by surface modifications to improve physicochemical and biological properties, such as adhesion, printability, wetting and biocompatibility. Polymer functionalization allows to graft specific moieties and conjugate molecules that improve material performances. In the last decades, several approaches have been designed in the industry and academia to graft functional groups on surfaces. Here, we review surface decoration of polymers and nanomaterials, with focus on major industrial applications in the medical field, textile industry, water treatment and food packaging. We discuss the advantages and challenges of polymer functionalization. More knowledge is needed on the biology behind cell–polymer interactions, nanosafety and manufacturing at the industrial scale

    La riforma della amministrazione locale

    Get PDF
    Relazioni del convegno della Fondazione Giovanni Agnelli: «La riforma dell’amministrazione locale», prospettive e confronto sul decentramento amministrativo e sul ruolo delle istituzioni locali.- Indice #7- Premessa, Franco Levi #9- La riforma dell’Amministrazione locale, Mario Nigro #11- I presupposti costituzionali della riforma del governo locale, Gustavo Zagrebelsky #61- I Comuni, Giorgio Berti #91- La Provincia e l’ente intermedio, Fabio Roversi-Monaco #107- Problemi inerenti il governo delle aree metropolitane, Giorgio Pastori #131- Gli enti settoriali, Francesco Trimarchi #151- I rapporti tra la Regione e gli enti minori, Franco Bassanini #167- I rapporti tra i vari livelli di governo, Franco Pizzetti #215- La finanza locale, Dino Piero Giarda #23

    Terminology - glossary including acronyms and quotations in use for the conservative spinal deformities treatment: 8th SOSORT consensus paper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This report is the SOSORT Consensus Paper on Terminology for use in the treatment of conservative spinal deformities. Figures are provided and relevant literature is cited where appropriate.</p> <p>Methods</p> <p>The Delphi method was used to reach a preliminary consensus before the meeting, where the terms that still needed further clarification were discussed.</p> <p>Results</p> <p>A final agreement was found for all the terms, which now constitute the base of this glossary. New terms will be added after being discussed and accepted.</p> <p>Discussion</p> <p>When only one set of terms is used for communication in a place or among a group of people, then everyone can clearly and efficiently communicate. This principle applies for any professional group. Until now, no common set of terms was available in the field of the conservative treatment of scoliosis and spinal deformities. This glossary gives a common base language to draw from to discuss data, findings and treatment.</p

    Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies

    Get PDF
    AbstractPlasmonic nanoparticles (NPs) are exploited to concentrate light, provide local heating and enhance drug release when coupled to smart polymers. However, the role of NP assembling in these processes is poorly investigated, although their superior performance as nanoheaters has been theoretically predicted since a decade. Here we report on a compound hydrogel (agarose and carbomer 974P) loaded with gold NPs of different configurations. We investigate the dynamics of light-heat conversion in these hybrid plasmonic nanomaterials via a combination of ultrafast pump-probe spectroscopy and hot-electrons dynamical modeling. The photothermal study ascertains the possibility to control the degree of assembling via surface functionalization of the NPs, thus enabling a tuning of the photothermal response of the plasmon-enhanced gel under continuous wave excitation. We exploit these assemblies to enhance photothermal release of drug mimetics with large steric hindrance loaded in the hydrogel. Using compounds with an effective hydrodynamic diameter bigger than the mesh size of the gel matrix, we find that the nanoheaters assemblies enable a two orders of magnitude faster cumulative drug release toward the surrounding environment compared to isolated NPs, under the same experimental conditions. Our results pave the way for a new paradigm of nanoplasmonic control over drug release

    Advances in Bio-Based Polymers for Colorectal Cancer Treatment: Hydrogels and Nanoplatforms

    No full text
    Adenocarcinoma of the colon is the most common malignant neoplasia of the gastrointestinal tract and is a major contributor to mortality worldwide. Invasiveness and metastatic behavior are typical of malignant tumors and, because of its portal drainage, the liver is the closest capillary bed available in this case, hence the common site of metastatic dissemination. Current therapies forecast total resection of primary tumor when possible and partial liver resection at advanced stages, along with systemic intravenous therapies consisting of chemotherapeutic agents such as 5-fluorouracil. These cures are definitely not exempt from drawbacks and heavy side effects. Biocompatible polymeric networks, both in colloids and bulk forms, able to absorb large quantities of water and load a variety of molecules-belong to the class of innovative drug delivery systems, thus suitable for the purpose and tunable on each patient can represent a promising alternative. Indeed, the implantation of polymeric scaffolds easy to synthesize can substitute chemotherapy and combination therapies scheduling, shortening side effects. Moreover, they do not require a surgical removal thanks to spontaneous degradation and guarantees an extended and regional cargo release, maintaining high drug concentrations. In this review, we focus our attention on the key role of polymeric networks as drug delivery systems potentially able to counteract this dramatic disease
    corecore