11 research outputs found

    The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases

    No full text
    Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of alpha-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging

    A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes

    No full text
    The myocardium behaves like a sophisticated orchestra that expresses its true potential only if each member performs the correct task harmonically. Recapitulating its complexity within engineered 3D functional constructs with tailored biological and mechanical properties, is one of the current scientific priorities in the field of regenerative medicine and tissue engineering. In this study, driven by the necessity of fabricating advanced model of cardiac tissue, we present an innovative approach consisting of heterogeneous, multi-cellular constructs composed of Human Umbilical Vein Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocytes (iPSC-CMs). Cells were encapsulated within hydrogel strands containing alginate and PEG-Fibrinogen (PF) and extruded through a custom microfluidic printing head (MPH) that allows to precisely tailor their 3D spatial deposition, guaranteeing a high printing fidelity and resolution. We obtained a 3D cardiac tissue compose of iPSC-derived CMs with a high orientation index imposed by the different defined geometries and blood vessel-like shapes generated by HUVECs which, as demonstrated by in vivo grafting, better support the integration of the engineered cardiac tissue with host’s vasculature

    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress

    No full text
    Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC.We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage

    Givinostat reduces adverse cardiac remodeling regulating fibroblasts activation

    No full text
    Cardiovascular diseases (CVDs) are a major burden on the healthcare system: indeed, over two million new cases are diagnosed every year worldwide. Unfortunately, important drawbacks for the treatment of these patients derive from our current inability to stop the structural alterations that lead to heart failure, the common endpoint of many CVDs. In this scenario, a better understanding of the role of epigenetics – hereditable changes of chromatin that do not alter the DNA sequence itself – is warranted. To date, hyperacetylation of histones has been reported in hypertension and myocardial infarction, but the use of inhibitors for treating CVDs remains limited. Here, we studied the effect of the histone deacetylase inhibitor Givinostat on a mouse model of acute myocardial infarction. We found that it contributes to decrease endothelial-to-mesenchymal transition and inflammation, reducing cardiac fibrosis and improving heart performance and protecting the blood vessels from apoptosis through the modulatory effect of cardiac fibroblasts on endothelial cells. Therefore, Givinostat may have potential for the treatment of CVDs

    In vivoorganized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles

    No full text
    Extracellular vesicles (EVs) have become a key tool in the biotechnological landscape due to their well-documented ability of mediating intercellular communication. Such feature has been explored and, actually, it is under constant investigation by researchers, who have unraveled the important role of EVs in several research fields ranging from oncology, immunology and diagnostics to regenerative medicine. Unfortunately, there are still some limits to overcome before a clinical application, including the inability to confine the EVs to strategically defined sites of interest, to avoid side effects. In this study, for the first time, EVs application is supported by 3D bioprinting technology to develop a new strategy for applying the angiogenic cargo of HUVEC-derived EVs in regenerative medicine. EVs, derived from human endothelial cells and grown under different stressed conditions, were collected and used as bio-additives for the formulation of advanced bioinks. After in vivo sub-cutaneous implantation, we demonstrated that the bioprinted 3D structures, loaded with EVs, supported the formation of a new functional vasculature in situ, consisting of blood-perfused microvessels recapitulating the printed pattern. The results obtained in this study favor the development of new therapeutic approaches for critical clinical conditions, such as the need for prompt revascularization of ischemic tissues, which represents the fundamental substrate for advanced regenerative medicine applications

    Unusual Association of NF-ÎșB Components in Tumor-Associated Macrophages (TAMs) Promotes HSPG2-Mediated Immune-Escaping Mechanism in Breast Cancer

    No full text
    The cellular heterogeneity of the tumor environment of breast cancer (BC) is extremely complex and includes different actors such as neoplastic, stromal, and immunosuppressive cells, which contribute to the chemical and mechanical modification of the environment surrounding the tumor-exasperating immune-escaping mechanisms. In addition to molecular signals that make the tumor microenvironment (TME) unacceptable for the penetrance of the immune system, the physical properties of tumoral extracellular matrix (tECM) also have carved out a fundamental role in the processes of the protection of the tumor niche. Tumor-associated macrophages (TAMs), with an M2 immunosuppressive phenotype, are important determinants for the establishment of a tumor phenotype excluded from T cells. NF-ÎșB transcription factors orchestrate innate immunity and represent the common thread between inflammation and cancer. Many studies have focused on canonical activation of NF-ÎșB; however, activation of non-canonical signaling predicts poor survival and resistance to therapy. In this scenario, we demonstrated the existence of an unusual association of NF-ÎșB components in TAMs that determines the deposition of HSPG2 that affects the stiffness of tECM. These results highlight a new mechanism counterbalanced between physical factors and a new perspective of mechano-pathology to be targeted to counteract immune evasion in BC

    Focus on the road to modelling cardiomyopathy in muscular dystrophy

    No full text
    Alterations in the DMD gene, which codes for the protein dystrophin, cause forms of dystrophinopathies such as Duchenne muscular dystrophy, an X-linked disease. Cardiomyopathy linked to DMD mutations is becoming the leading cause of death in patients with dystrophinopathy. Since phenotypic pathophysiological mechanisms are not fully understood, the improvement and development of new disease models, considering their relative advantages and disadvantages, is essential. The application of genetic engineering approaches on induced pluripotent stem cells, such as gene editing technology, enables the development of physiologically relevant human cell models for in vitro dystrophinopathy studies. The combination of induced pluripotent stem cells-derived cardiovascular cell types and 3 D bioprinting technologies hold great promise for the study of dystrophin-linked cardiomyopathy. This combined approach enables the assessment of responses to physical or chemical stimuli, and the influence of pharmaceutical approaches. The critical objective of in vitro microphysiological systems is to more accurately reproduce the microenvironment observed in vivo. Ground-breaking methodology involving the connection of multiple microphysiological systems comprised of different tissues would represent a move toward precision body-on-chip disease modelling could lead to a critical expansion in what is known about inter-organ responses to disease and novel therapies that have the potential to replace animal models. In this review, we will focus on the generation, development, and application of current cellular, animal and potential for bio-printed models, in the study of the pathophysiological mechanisms underlying dystrophin-linked cardiomyopathy in the direction of personalized medicine

    Extracellular vesicles from skeletal muscle cells efficiently promote myogenesis in induced pluripotent stem cells

    No full text
    The recent advances, offered by cell therapy in the regenerative medicine field, offer a revolutionary potential for the development of innovative cures to restore compromised physiological functions or organs. Adult myogenic precursors, such as myoblasts or satellite cells, possess a marked regenerative capacity, but the exploitation of this potential still encounters significant challenges in clinical application, due to low rate of proliferation in vitro, as well as a reduced self-renewal capacity. In this scenario, induced pluripotent stem cells (iPSCs) can offer not only an inexhaustible source of cells for regenerative therapeutic approaches, but also a valuable alternative for in vitro modeling of patient-specific diseases. In this study we established a reliable protocol to induce the myogenic differentiation of iPSCs, generated from pericytes and fibroblasts, exploiting skeletal muscle-derived extracellular vesicles (EVs), in combination with chemically defined factors. This genetic integration-free approach generates functional skeletal myotubes maintaining the engraftment ability in vivo. Our results demonstrate evidence that EVs can act as biological “shuttles” to deliver specific bioactive molecules for a successful transgene-free differentiation offering new opportunities for disease modeling and regenerative approaches

    Combining rotary wet-spinning biofabrication and electro-mechanical stimulation for thein vitroproduction of functional myo-substitutes

    Get PDF
    In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for the in vitro engineering of functional myo-substitutes. The samples produced through the described approach were first characterized in vitro and then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities

    Tackling current biomedical challenges with frontier biofabrication and organ-on-a-chip technologies

    Get PDF
    In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An indepth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two stateof-the-art technologies–namely biofabrication and organ-on-a-chip–in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis
    corecore