10 research outputs found

    Strategies in mass spectrometry for the assignment of Cys-Cys disulfide connectivities in proteins

    No full text
    Elucidating disulfide linkage patterns is a crucial part of protein characterization, for which mass spectrometry (MS) is now an indispensable analytical tool. In many cases, MS-based disulfide connectivity assignment is straightforwardly achieved using one-step protein fragmentation in the unreduced form followed by mass measurement of bridged fragments. By contrast, venom proteins, which are receiving increasing interest as potential therapeutics, are a challenge for MS-based disulfide assignment due to their numerous closely spaced cysteines and knotted disulfide structure, requiring creative strategies to determine their connectivity. Today, these include the use of an array of reagents for enzymatic and/or chemical cleavage, partial reduction, differential cysteine labeling and tandem MS. This review aims to describe the toolkit of techniques available to MS users approaching both straightforward and complex disulfide bridge assignments, with a particular focus on strategies utilizing standard instrumentation found in a well-equipped analytical or proteomics laboratory

    ADIBO-based “Click” chemistry for diagnostic peptide micro-array fabrication ::physicochemical and assay characteristics

    No full text
    Several azide-derivatized and fluorescently-labeled peptides were immobilized on azadibenzocyclooctyne (ADIBO)-activated slide surfaces via a strain-promoted alkyne-azide cycloaddition (SPAAC) reaction revealing excellent immobilization kinetics, good spot homogeneities and reproducible fluorescence signal intensities. A myc-peptide micro-array immunoassay showed an antibody limit-of-detection (LOD) superior to a microtiter plate-based ELISA. Bovine serum albumin (BSA) and dextran covalently attached via “click” chemistry more efficiently reduced non-specific binding (NSB) of fluorescently-labeled IgG to the microarray surface in comparison to immobilized hexanoic acid and various types of polyethylene glycol (PEG) derivatives. Confirmation of these findings via further studies with other proteins and serum components could open up new possibilities for human sample and microarray platform-based molecular diagnostic tests

    Serial measurement of pancreatic stone protein for the early detection of sepsis in intensive care unit patients: a prospective multicentric study.

    Get PDF
    BACKGROUND The early recognition and management of sepsis improves outcomes. Biomarkers may help in identifying earlier sub-clinical signs of sepsis. We explored the potential of serial measurements of C-reactive protein (CRP), procalcitonin (PCT) and pancreatic stone protein (PSP) for the early recognition of sepsis in patients hospitalized in the intensive care unit (ICU). METHODS This was a multicentric international prospective observational clinical study conducted in 14 ICUs in France, Switzerland, Italy, and the United Kingdom. Adult ICU patients at risk of nosocomial sepsis were included. A biomarker-blinded adjudication committee identified sepsis events and the days on which they began. The association of clinical sepsis diagnoses with the trajectories of PSP, CRP, and PCT in the 3 days preceding these diagnoses of sepsis were tested for markers of early sepsis detection. The performance of the biomarkers in sepsis diagnosis was assessed by receiver operating characteristic (ROC) analysis. RESULTS Of the 243 patients included, 53 developed nosocomial sepsis after a median of 6 days (interquartile range, 3-8 days). Clinical sepsis diagnosis was associated with an increase in biomarkers value over the 3 days preceding this diagnosis [PSP (p = 0.003), PCT (p = 0.025) and CRP (p = 0.009)]. PSP started to increase 5 days before the clinical diagnosis of sepsis, PCT 3 and CRP 2 days, respectively. The area under the ROC curve at the time of clinical sepsis was similar for all markers (PSP, 0.75; CRP, 0.77; PCT, 0.75). CONCLUSIONS While the diagnostic accuracy of PSP, CRP and PCT for sepsis were similar in this cohort, serial PSP measurement demonstrated an increase of this marker the days preceding the onset of signs necessary to clinical diagnose sepsis. This observation justifies further evaluation of the potential clinical benefit of serial PSP measurement in the management of critically ill patients developing nosocomial sepsis. Trial registration The study has been registered at ClinicalTrials.gov (no. NCT03474809), on March 16, 2018. https://www.clinicaltrials.gov/ct2/show/NCT03474809?term=NCT03474809&draw=2&rank=1

    The proteolytic activity of the paracaspase MALT1 is key in T cell activation

    No full text
    The paracaspase MALT1 is pivotal in antigen receptor-mediated lymphocyte activation and lymphomagenesis. MALT1 contains a caspase-like domain, but it is unknown whether this domain is proteolytically active. Here we report that MALT1 had arginine-directed proteolytic activity that was activated after T cell stimulation, and we identify the signaling protein Bcl-10 as a MALT1 substrate. Processing of Bcl-10 after Arg228 was required for T cell receptor-induced cell adhesion to fibronectin. In contrast, MALT1 activity but not Bcl-10 cleavage was essential for optimal activation of transcription factor NF-kappaB and production of interleukin 2. Thus, the proteolytic activity of MALT1 is central to T cell activation, which suggests a possible target for the development of immunomodulatory or anticancer drug
    corecore