30 research outputs found

    A new NMR solution structure of the SL1 HIV-1(Lai) loop–loop dimer

    Get PDF
    Dimerization of genomic RNA is directly related with the event of encapsidation and maturation of the virion. The initiating sequence of the dimerization is a short autocomplementary region in the hairpin loop SL1. We describe here a new solution structure of the RNA dimerization initiation site (DIS) of HIV-1(Lai). NMR pulsed field-gradient spin-echo techniques and multidimensional heteronuclear NMR spectroscopy indicate that this structure is formed by two hairpins linked by six Watson–Crick GC base pairs. Hinges between the stems and the loops are stabilized by intra and intermolecular interactions involving the A8, A9 and A16 adenines. The coaxial alignment of the three A-type helices present in the structure is supported by previous crystallography analysis but the A8 and A9 adenines are found in a bulged in position. These data suggest the existence of an equilibrium between bulged in and bulged out conformations in solution

    Stabilization of a G-Quadruplex from Unfolding by Replication Protein A Using Potassium and the Porphyrin TMPyP4

    Get PDF
    Replication protein A (RPA) plays an essential role in DNA replication by binding and unfolding non-canonical single-stranded DNA (ssDNA) structures. Of the six RPA ssDNA binding domains (labeled A-F), RPA-CDE selectively binds a G-quadruplex forming sequence (5′-TAGGGGAAGGGTTGGAGTGGGTT-3′ called Gq23). In K+, Gq23 forms a mixed parallel/antiparallel conformation, and in Na+ Gq23 has a less stable (TM lowered by ∼20°C), antiparallel conformation. Gq23 is intramolecular and 1D NMR confirms a stable G-quadruplex structure in K+. Full-length RPA and RPA-CDE-core can bind and unfold the Na+ form of Gq23 very efficiently, but complete unfolding is not observed with the K+ form. Studies with G-quadruplex ligands, indicate that TMPyP4 has a thermal stabilization effect on Gq23 in K+, and inhibits complete unfolding by RPA and RPA-CDE-core. Overall these data indicate that G-quadruplexes present a unique problem for RPA to unfold and ligands, such as TMPyP4, could possibly hinder DNA replication by blocking unfolding by RPA

    Chemical shift assignments of the partially deuterated Fyn SH2–SH3 domain

    Get PDF
    Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1H, 15N and 13C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3–SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165. © 2017, Springer Science+Business Media B.V., part of Springer Nature

    Effect of Charge Substitutions at Residue His-142 on Voltage Gating of Connexin43 Channels

    Get PDF
    AbstractPrevious studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119–144; referred to as “L2”). Structural analysis of L2 shows two α-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43

    Mechanism for modulation of gating of connexin26-containing channels by taurine

    Get PDF
    The mechanisms of action of endogenous modulatory ligands of connexin channels are largely unknown. Previous work showed that protonated aminosulfonates (AS), notably taurine, directly and reversibly inhibit homomeric and heteromeric channels that contain Cx26, a widely distributed connexin, but not homomeric Cx32 channels. The present study investigated the molecular mechanisms of connexin channel modulation by taurine, using hemichannels and junctional channels composed of Cx26 (homomeric) and Cx26/Cx32 (heteromeric). The addition of a 28–amino acid “tag” to the carboxyl-terminal domain (CT) of Cx26 (Cx26T) eliminated taurine sensitivity of homomeric and heteromeric hemichannels in cells and liposomes. Cleavage of all but four residues of the tag (Cx26Tc) resulted in taurine-induced pore narrowing in homomeric hemichannels, and restored taurine inhibition of heteromeric hemichannels (Cx26Tc/Cx32). Taurine actions on junctional channels were fully consistent with those on hemichannels. Taurine-induced inhibition of Cx26/Cx32T and nontagged Cx26 junctional channels was blocked by extracellular HEPES, a blocker of the taurine transporter, confirming that the taurine-sensitive site of Cx26 is cytoplasmic. Nuclear magnetic resonance of peptides corresponding to Cx26 cytoplasmic domains showed that taurine binds to the cytoplasmic loop (CL) and not the CT, and that the CT and CL directly interact. ELISA showed that taurine disrupts a pH-dependent interaction between the CT and the CT-proximal half of the CL. These studies reveal that AS disrupt a pH-driven cytoplasmic interdomain interaction in Cx26-containing channels, causing closure, and that the Cx26CT has a modulatory role in Cx26 function

    Etude structurale par RMN des changements conformationnels de la séquence SL1 de l'ARN de l'isolat VIH-1 laï

    No full text
    Like all retroviruses, the human immunodeficience virus (HIV) genome is made up of two identical copies of genomic RNA. Those are related in a non covalent way to their 5' leader. The dimerization phenomenon interferes with various key stages of the retroviral cycle life, including encapsidation and maturation of the virion. The dimerization inhibition represents a new way of processing against HIV. This work concerns the NMR structural study of different conformations for the SL1 RNA fragment. This sequence initiates the retrovirus dimerization. It was a first approach for the comprehension of the interactions between the both RNA of VIH-1Laï during the dimerization step. These structural investigations constitute a solid base study in the drug-design strategies implying the development of inhibitors likely to interfere with the dimerization phenomenonLe génome du virus de l'immunodéficience humaine (VIH) est constitué, comme tous les rétrovirus, de deux copies identiques d'ARN génomique. Ce phénomène de dimérisation interfère avec différentes étapes du cycle rétroviral. Il est en outre corrélé aux étapes d'encapsidation de l'ARN génomique et de maturation des particules virales. L'inhibition de la dimérisation représente une nouvelle voie de traitement potentiel du VIH. Ce travail a permis de déterminer par RMN la structure tridimensionnelle de différentes conformations de la séquence SL1 qui joue un rôle clé dans l'initiation de la dimérisation du rétrovirus. Il constitue une première approche dans la compréhension des interactions entre les 2 brins d'ARN de l'ARN génomique de VIH-1Laï lors de l'étape de dimérisation. Ces différentes investigations structurales constituent une base d'étude dans les stratégies de drug design impliquant le développement d'inhibiteurs susceptibles d'interférer avec les sites d'interactions ARN/ARN
    corecore