6 research outputs found
Evaluation of bond strength of silorane and methacrylate based restorative systems to dentin using different cavity models
OBJECTIVE: The aim of this in vitro study was to evaluate the microtensile bond strength (µTBS) to dentin of two different restorative systems: silorane-based (P90), and methacrylate-based (P60), using two cavity models. MATERIAL AND METHODS: Occlusal enamel of 40 human third molars was removed to expose flat dentin surface. Class I cavities with 4 mm mesial-distal width, 3 mm buccal-lingual width and 3 mm depth (C-factor=4.5) were prepared in 20 teeth, which were divided into two groups (n=10) restored with P60 and P90, bulk-filled after dentin treatment according to manufacturer's instructions. Flat buccal dentin surfaces were prepared in the 20 remaining teeth (C-factor=0.2) and restored with resin blocks measuring 4x3x3 mm using the two restorative systems (n=10). The teeth were sectioned into samples with area between 0.85 and 1.25 mm2 that were submitted to µTBS testing, using a universal testing machine (EMIC) at speed of 0.5 mm/min. Fractured specimens were analyzed under stereomicroscope and categorized according to fracture pattern. Data were analyzed using ANOVA and Tukey Kramer tests. RESULTS: For flat surfaces, P60 obtained higher bond strength values compared with P90. However, for Class I cavities, P60 showed significant reduction in bond strength (p;0.05), or between Class I Cavity and Flat Surface group, considering P90 restorative system (p>;0.05). Regarding fracture pattern, there was no statistical difference among groups (p=0.0713) and 56.3% of the fractures were adhesive. CONCLUSION: It was concluded that methacrylate-based composite µTBS was influenced by cavity models, and the use of silorane-based composite led to similar bond strength values compared to the methacrylate-based composite in cavities with high C-factor
Wet-bonding technique with ethanol may reduce protease activity in dentin-resin interface following application of universal adhesive system
Greater degradation of the hybrid layer is expected when a universal adhesive system is used, especially ie conventional application strategy. Therefore, it would important to evaluate the effect of the ethanol (ETH) and a potential matrix protease inhibitor (caffeic acid phenethyl ester/ CAPE) to maximize the ability to achieve stable dentin bond strength. The aim of this study was to evaluated the effect of ETH on a wet-bonding technique, and dentin pretreatments with different concentrations of CAPE in ethanolic solution, followed by application of a universal adhesive system (Single Bond Universal) to inhibit proteolytic activity. MATERIAL AND METHODS: Dentin blocks were allocated to eight experimental groups according to the strategy (total-etch our self-etch) and treatments: ETH, or dentin pretreatment with CAPE (at 0.5%, 2.5%; and 5.0%). Half of each block (each hemiblock) served as the control (without dentin pretreatments) for the same group. The bonding strategy was performed (adhesive system/ restoration with composite resin). Two slices were obtained from each hemiblock and evaluated using in situ zymography. The proteolytic activity was analyzed by quantifying the green photons of the images obtained under a fluorescence microscope in three dentin locations close to the dentin-resin interface: hybrid layer (HL), underlying dentin (UD) and deep dentin (DD). RESULTS: Wilcoxon tests (for comparison between experimental and control groups) and Friedman and Nemenyi tests (for comparisons between interface locations) showed that there was no difference between the groups with different CAPE concentrations and the respective control groups (p>0.05). ETH reduced the proteolytic activity at the HL and UD (p<0.05). CONCLUSIONS: The wet-bonding technique with ETH proved effective in reducing the proteolytic activity. The use of CAPE in different concentrations solubilized in ethanol did not have a favorable effect on proteolytic inhibition. Key words:Adhesives, Hybrid layer, Dentin, Metalloproteinases
Evaluation of bond strength of silorane and methacrylate based restorative systems to dentin using different cavity models
OBJECTIVE: The aim of this in vitro study was to evaluate the microtensile bond strength (µTBS) to dentin of two different restorative systems: silorane-based (P90), and methacrylate-based (P60), using two cavity models. MATERIAL AND METHODS: Occlusal enamel of 40 human third molars was removed to expose flat dentin surface. Class I cavities with 4 mm mesial-distal width, 3 mm buccal-lingual width and 3 mm depth (C-factor=4.5) were prepared in 20 teeth, which were divided into two groups (n=10) restored with P60 and P90, bulk-filled after dentin treatment according to manufacturer's instructions. Flat buccal dentin surfaces were prepared in the 20 remaining teeth (C-factor=0.2) and restored with resin blocks measuring 4x3x3 mm using the two restorative systems (n=10). The teeth were sectioned into samples with area between 0.85 and 1.25 mm(2) that were submitted to µTBS testing, using a universal testing machine (EMIC) at speed of 0.5 mm/min. Fractured specimens were analyzed under stereomicroscope and categorized according to fracture pattern. Data were analyzed using ANOVA and Tukey Kramer tests. RESULTS: For flat surfaces, P60 obtained higher bond strength values compared with P90. However, for Class I cavities, P60 showed significant reduction in bond strength (p<0.05). No statistical difference between restorative systems was shown for Class I cavity model (p>0.05), or between Class I Cavity and Flat Surface group, considering P90 restorative system (p>0.05). Regarding fracture pattern, there was no statistical difference among groups (p=0.0713) and 56.3% of the fractures were adhesive. CONCLUSION: It was concluded that methacrylate-based composite µTBS was influenced by cavity models, and the use of silorane-based composite led to similar bond strength values compared to the methacrylate-based composite in cavities with high C-factor
Evaluation of bond strength of silorane and methacrylate based restorative systems to dentin using different cavity models
OBJECTIVE: The aim of this in vitro study was to evaluate the microtensile bond strength (µTBS) to dentin of two different restorative systems: silorane-based (P90), and methacrylate-based (P60), using two cavity models. MATERIAL AND METHODS: Occlusal enamel of 40 human third molars was removed to expose flat dentin surface. Class I cavities with 4 mm mesial-distal width, 3 mm buccal-lingual width and 3 mm depth (C-factor=4.5) were prepared in 20 teeth, which were divided into two groups (n=10) restored with P60 and P90, bulk-filled after dentin treatment according to manufacturer's instructions. Flat buccal dentin surfaces were prepared in the 20 remaining teeth (C-factor=0.2) and restored with resin blocks measuring 4x3x3 mm using the two restorative systems (n=10). The teeth were sectioned into samples with area between 0.85 and 1.25 mm2 that were submitted to µTBS testing, using a universal testing machine (EMIC) at speed of 0.5 mm/min. Fractured specimens were analyzed under stereomicroscope and categorized according to fracture pattern. Data were analyzed using ANOVA and Tukey Kramer tests. RESULTS: For flat surfaces, P60 obtained higher bond strength values compared with P90. However, for Class I cavities, P60 showed significant reduction in bond strength (p0.05), or between Class I Cavity and Flat Surface group, considering P90 restorative system (p>0.05). Regarding fracture pattern, there was no statistical difference among groups (p=0.0713) and 56.3% of the fractures were adhesive. CONCLUSION: It was concluded that methacrylate-based composite µTBS was influenced by cavity models, and the use of silorane-based composite led to similar bond strength values compared to the methacrylate-based composite in cavities with high C-factor
Regular and Platform Switching: Bone Stress Analysis Varying Implant Type
Purpose: This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis.Materials and Methods: Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm x 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm x 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm x 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm x 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (sigma(max)) and minimum (sigma(min)) principal stress, equivalent von Mises stress (sigma(vM)), and maximum principal elastic strain (epsilon(max)) values were evaluated for the cortical and trabecular bone.Results: For cortical bone, the highest stress values (sigma(max) and sigma(vm)) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For epsilon(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (sigma(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For sigma(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For epsilon(max), ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003).Conclusion: The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP