14 research outputs found

    Neurocomputational Principles of Action Understanding: Perceptual Inference, Predictive Coding, and Embodied Simulation

    Get PDF
    The social alignment of the human mind is omnipresent in our everyday life and culture. Yet, what mechanisms of the brain allow humans to be social, and how do they work and interact? Despite the apparent importance of this question, the nexus of cognitive processes underlying social intelligence is still largely unknown. A system of mirror neurons has been under deep, interdisciplinary consideration over recent years, and farreaching contributions to social cognition have been suggested, including understanding others' actions, intentions, and emotions. Theories of embodied cognition emphasize that our minds develop by processing and inferring structures given the encountered bodily experiences. It has been suggested that also action understanding is possible by simulating others' actions by means of the own embodied representations. Nonetheless, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto principally embodied states like intentions and motor representations, and which processes foster suitable simulations thereof. Seeing that our minds are generative and predictive in nature, and that cognition is elementally anticipatory, also principles of predictive coding have been suggested to be involved in action understanding. This thesis puts forward a unifying hypothesis of embodied simulation, predictive coding, and perceptual inferences, and supports it with a neural network model. The model (i) learns encodings of embodied, self-centered visual and proprioceptive, modal and submodal perceptions as well as kinematic intentions in separate modules, (ii) learns temporal, recurrent predictions inside and across these modules to foster distributed and consistent simulations of unobservable embodied states, (iii) and applies top-down expectations to drive perceptual inferences and imagery processes that establish the correspondence between action observations and the unfolding, simulated self-representations. All components of the network are evaluated separately and in complete scenarios on motion capture data of human subjects. In the results, I show that the model becomes capable of simulating and reenacting observed actions based on its embodied experience, leading to action understanding in terms of motor preparations and inference of kinematic intentions. Furthermore, I show that perceptual inferences by means of perspective-taking and feature binding can establish the correspondence between self and other and might thus be deeply anchored in action understanding and other abilities attributed to the mirror neuron system. In conclusion, the model shows that it is indeed possible to develop embodied, neurocomputational models of the alleged principles of social cognition, providing support for the above hypotheses and opportunities for further investigations.Die soziale Orientierung des menschlichen Geistes ist in unserem Alltag sowie unserer Kultur allgegenwärtig. Welche Vorgänge im Gehirn führen jedoch dazu, und wie funktionieren und interagieren sie? Trotz des offensichtlichen Gewichts dieser Fragestellung sind die der sozialen Intelligenz zugrundeliegenden Zusammenhänge und kognitiven Prozesse weitestgehend ungeklärt. Seit einigen Jahren wird ein als Spiegelneuronensystem benannter neuronaler Komplex umfangreich und interdisziplinär betrachtet. Ihm werden weitreichende Implikationen für die soziale Kognition zugeschrieben, so etwa das Verstehen der Aktionen, Intentionen und Emotionen anderer. Die Theorie der 'Embodied Cognition' betont, dass die verarbeiteten und hergeleiteten Strukturen in unserem Geist erst durch unser Handeln und unsere körperlichen Erfahrungen hervorgebracht werden. So soll auch unser Verständnis anderer dadurch zustande kommen, dass wir ihre Handlungen mittels der durch unseren eigenen Körper erworbenen Erfahrungen simulieren. Es bleibt jedoch zunächst offen, wie etwa visuell wahrgenommene Bewegungen anderer Personen auf grundsätzlich sensomotorisch koordinierte Zustände abgebildet werden, und welche mentalen Prozesse entsprechende Simulationen anstoßen. In Anbetracht der antizipatorischen Natur unseres Geistes wurden auch Prinzipien der prädiktiven Codierung ('Predictive Coding') mit Handlungsverständnis in Zusammenhang gebracht. In dieser Arbeit schlage ich eine kombinierende Hypothese aus 'Embodied Simulation', prädiktiven Codierungen, und perzeptuellen Inferenzen vor, und untermauere diese mithilfe eines neuronalen Modells. Das Modell lernt (i) Codierungen von körperlich kontextualisierten, selbst-bezogenen, visuellen und propriozeptiven, modalen und submodalen Reizen sowohl als auch kinematische Intentionen in separaten Modulen, lernt (ii) zeitliche, rekurrente Vorhersagen innerhalb der Module und modulübergreifend um konsistente Simulation teilweise nicht beobachtbarer, verteilter Zustandssequenzen zu ermöglichen, und wendet (iii) top-down Erwartungen an um perzeptuelle Inferenzen und perspektivische Vorstellungsprozesse anzustoßen, so dass die Korrespondenz von Beobachtungen zu den gelernten Selbstrepräsentationen hergestellt wird. Die Komponenten des Netzwerks werden sowohl einzeln als auch in vollständigen Szenarien anhand von Bewegungsaufzeichnungen menschlicher Versuchspersonen ausgewertet. Die Ergebnisse zeigen, dass das Modell bestimmte Handlungtypen simulieren und unter Zuhilfenahme der eigenen körperlichen Erfahrungen beobachtete Handlungen nachvollziehen kann, indem motorische Resonanzen und intentionale Inferenzen resultieren. Desweiteren zeigen die Auswertungen, das perzeptuelle Inferencen im Sinne von Perspektivübernahme und Merkmalsintegration die Korrespondenz zwischen dem Selbst und Anderen herstellen können, und dass diese Prozesse daher tief in unserem Handlungsverständnis und anderen den Spiegelneuronen zugeschriebenen Fähigkeiten verankert sein können. Schlussfolgernd zeigt das neuronale Netz, dass es in der Tat möglich ist, die vermeintlichen Prinzipien der sozialen Kognition mit einem körperlich grundierten Ansatz zu modellieren, so dass die oben genannten Theorien unterstützt werden und sich neue Gelegenheiten für weitere Untersuchungen ergeben

    Embodied learning of a generative neural model for biological motion perception and inference

    Get PDF
    Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons

    Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    Get PDF
    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, but both belong to the category of felines. In other words, tigers and leopards are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in the computational neurosciences. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the approach successully establishes category and subcategory representations

    Monitoring plant functional diversity from space

    Get PDF
    The world’s ecosystems are losing biodiversity fast. A satellite mission designed to track changes in plant functional diversity around the globe could deepen our understanding of the pace and consequences of this change and how to manage it

    Modeling perspective-taking upon observation of 3D biological motion

    No full text

    Binding and perspective taking as inference in a generative neural network model

    No full text
    The ability to flexibly bind features into coherent wholes from different perspectives is a hallmark of cognition and intelligence. Importantly, the binding problem is not only relevant for vision but also for general intelligence, sensorimotor integration, event processing, and language. Various artificial neural network models have tackled this problem with dynamic neural fields and related approaches. Here we focus on a generative encoder-decoder architecture that adapts its perspective and binds features by means of retrospective inference. We first train a model to learn sufficiently accurate generative models of dynamic biological motion or other harmonic motion patterns, such as a pendulum. We then scramble the input to a certain extent, possibly vary the perspective onto it, and propagate the prediction error back onto a binding matrix, that is, hidden neural states that determine feature binding. Moreover, we propagate the error further back onto perspective taking neurons, which rotate and translate the input features onto a known frame of reference. Evaluations show that the resulting gradient-based inference process solves the perspective taking and binding problem for known biological motion patterns, essentially yielding a Gestalt perception mechanism. In addition, redundant feature properties and population encodings are shown to be highly useful. While we evaluate the algorithm on biological motion patterns, the principled approach should be applicable to binding and Gestalt perception problems in other domains
    corecore