7,308 research outputs found

    PCA of PCA: Principal Component Analysis of Partial Covering Absorption in NGC 1365

    Get PDF
    We analyse 400 ks of XMM-Newton data on the active galactic nucleus NGC 1365 using principal component analysis (PCA) to identify model independent spectral components. We find two significant components and demonstrate that they are qualitatively different from those found in MCG?6-30-15 using the same method. As the variability in NGC 1365 is known to be due to changes in the parameters of a partial covering neutral absorber, this shows that the same mechanism cannot be the driver of variability in MCG-6-30-15. By examining intervals where the spectrum shows relatively low absorption we separate the effects of intrinsic source variability, including signatures of relativistic reflection, from variations in the intervening absorption. We simulate the principal components produced by different physical variations, and show that PCA provides a clear distinction between absorption and reflection as the drivers of variability in AGN spectra. The simulations are shown to reproduce the PCA spectra of both NGC 1365 and MCG-6-30-15, and further demonstrate that the dominant cause of spectral variability in these two sources requires a qualitatively different mechanism.Comment: 8 pages, 10 figures. Accepted for publication in MNRA

    Implications of very rapid TeV variability in blazars

    Full text link
    We discuss the implications of rapid (few-minute) variability in the TeV flux of blazars, which has been observed recently with the HESS and MAGIC telescopes. The variability timescales seen in PKS 2155-304 and Mrk 501 are much shorter than inferred light-crossing times at the black hole horizon, suggesting that the variability involves enhanced emission in a small region within an outflowing jet. The enhancement could be triggered by dissipation in part of the black hole's magnetosphere at the base of the outflow, or else by instabilities in the jet itself. By considering the energetics of the observed flares, along with the requirement that TeV photons escape without producing pairs, we deduce that the bulk Lorentz factors in the jets must be >50. The distance of the emission region from the central black hole is less well-constrained. We discuss possible consequences for multi-wavelength observations.Comment: 5 pages, no figures, accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    Applying remote sensing and GIS techniques in solving rural county information needs

    Get PDF
    The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity

    Modelling the Extreme X-ray Spectrum of IRAS 13224-3809

    Get PDF
    The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability, frequency depended time lags, and strong Fe K line and Fe L features in the long 2011 XMM-Newton observation. In this work we study the spectral properties of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the nature of the source, focusing in particular on the spectral variability exhibited. The RGS spectrum shows no obvious signatures of absorption by partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra with a model that includes relativistic reflection from the inner accretion disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV) blackbody, which may originate in the accretion disc, either as direct or reprocessed thermal emission. We find that the reflection model explains the time-averaged spectrum well, and we also undertake flux-resolved and time-resolved spectral analyses, which provide evidence of gravitational light-bending effects. Additionally, the temperature and flux of the blackbody component are found to follow the LT4L\propto T^{4} relation expected for simple thermal blackbody emission from a constant emitting area, indicating a physical origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    On the changes of the electronic structure of early-transition-metal-systems at hydrogenation

    Get PDF
    The hydrogenation effect on Sc, Y, La, Cd and Eu has been investigated by XPS. The stability, the charge transfer as well as the microscopic behaviours of the processes have been discussed

    Spin polarization of electron current through a potential barrier in two-dimensional structures with spin-orbit interaction

    Full text link
    We show that an initially unpolarized electron flow acquires spin polarization after passing through a lateral barrier in two-dimensional (2D) system with spin-orbit interaction (SOI) even if the current is directed normally to the barrier. The generated spin current depends on the distance from the barrier. It oscillates with the distance in the vicinity of the barrier and asymptotically reaches a constant value. The most efficient generation of the spin current (with polarization above 50%) occurs, when the Fermi energy is near the potential barrier maximum. Since the spin current in SOI medium is not unambiguously defined we propose to pass this current from the SOI region into a contacting region without SOI and show, that the spin polarization loss under such transmission can be negligible.Comment: 11 pages, 6 figures, accepted for publication in Journal of Physics: Condensed Matte
    corecore