17 research outputs found
A Waveform-Encoded SAR Implementation Using a Limited Number of Cyclically Shifted Chirps
Synthetic aperture radar (SAR) provides high-resolution images of the Earth’s surfaceirrespective of sunlight and weather conditions. In conventional spaceborne SAR, nadir echoescaused by the pulsed operation of SAR may significantly affect the SAR image quality. Therefore,the pulse repetition frequency (PRF) is constrained within the SAR system design to avoid theappearance of nadir echoes in the SAR image. As an alternative, the waveform-encoded SAR conceptusing a pulse-to-pulse variation of the transmitted waveform and dual-focus postprocessing canbe exploited for nadir echo removal and to alleviate the PRF constraints. In particular, cyclicallyshifted chirps have been proposed as a possible waveform variation scheme. However, a largenumber of distinct waveforms is required to enable the simple implementation of the concept.This work proposes a technique based on the Eulerian circuit for generating a waveform sequencestarting from a reduced number of distinct cyclically shifted chirps that can be effectively exploitedfor waveform-encoded SAR. The nadir echo suppression performance of the proposed scheme isanalyzed through simulations using real TerraSAR-X data and a realistic nadir echo model thatshows how the number of distinct waveforms and therefore the system complexity can be reducedwithout significant performance loss. These developments reduce the calibration burden and makethe concept viable for implementation in future SAR systems
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Enantioselective Total Syntheses of Cassane Furanoditerpenoids and their Stimulation of Cellular Respiration in Brown Adipocytes
We report the first and enantioselective total syntheses of (+)-1-deacetylcaesalmin C, (+)-δ-caesalpin, (+)-norcaesalpinin MC, and (+)-norcaesalpinin P. Salient features of the synthetic strategy are exo-selective intramolecular Diels–Alder reaction of a furanoquinone monoketal and subsequent chemoselective reduction of the resulting pentacyclic furfuryl ketal furnishing a keystone intermediate. The latter enables access to the collection of natural products through implementation of stereoselective oxidations. Having accessed the cassane furanoditerpenoids, we unveil previously unknown bioactivity: (+)-1-Deacetylcaesalmin C stimulates respiration in brown adipocytes, which has been suggested to play a central role in treatment of obesity
Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction
The diversity and abundance of native invertebrates is declining globally, which could have significant consequences for ecosystem functioning. Declines are likely to be at least as severe as those observed for vertebrates, although often are difficult to quantify due to a lack of historic baseline data and limited monitoring effort. The Lepidoptera are well studied in Australia compared with other invertebrates, so we know that some species are imperilled or declining. Despite this, few butterfly taxa are explicitly listed for protection by legislation. Here we aim to identify the butterfly taxa that would most benefit from listing by determining the Australian butterflies at most immediate risk of extinction. We also identify the research and management actions needed to retain them. For 26 taxa identified by experts and various conservation schedules, we used structured expert elicitation to estimate the probability of extinction within 20 years (i.e. by 2040) and to identify key threatening processes, priority research and management needs. Collation and analysis of expert opinion indicated that one taxon, the laced fritillary (Argynnis hyperbius inconstans), is particularly imperilled, and that four taxa (Jalmenus eubulus, Jalmenus aridus, Hypochrysops piceatus and Oreisplanus munionga larana) have a moderate–high (>30%) risk of extinction by 2040. Mapped distributions of the 26 butterflies revealed that most are endemic to a single state or territory, and that many occupy narrow ranges. Inappropriate fire regimes, habitat loss and fragmentation (through agricultural practices), invasive species (mostly through habitat degradation caused by weeds and rabbits) and climate change were the most prevalent threats affecting the taxa considered. Increased resourcing and management intervention will be required to prevent these extinctions. We provide specific recommendations for averting such losses
Enantioselective Total Syntheses of Cassane Furanoditerpenoids and Their Stimulation of Cellular Respiration in Brown Adipocytes
We report the first and enantioselective total syntheses
of (+)-1-deacetylcaesalmin
C, (+)-δ-caesalpin, (+)-norcaesalpinin MC, and (+)-norcaesalpinin
P. Salient features of the synthetic strategy are an exo-selective
intramolecular Diels–Alder reaction of a furanoquinone monoketal
and subsequent chemoselective reduction of the resulting pentacyclic
furfuryl ketal, furnishing a keystone intermediate. The latter enables
access to the collection of natural products through implementation
of stereoselective oxidations. Having accessed the cassane furanoditerpenoids,
we unveil previously unknown bioactivity: (+)-1-deacetylcaesalmin
C stimulates respiration in brown adipocytes, which has been suggested
to play a central role in treatment of obesity
Characteristics of autoantibodies targeting 14-3-3 proteins and their association with clinical features in newly diagnosed giant cell arteritis
Objectives.: Autoantibodies are useful biomarkers for diagnosing and monitoring treatment in some autoimmune diseases. Antibodies against isoforms of 14-3-3 protein have been proposed as biomarkers for the presence of aortic aneurysm in large-vessel vasculitis (LVV). Here, we aimed to evaluate the diagnostic role and potential immunopathological involvement of anti-14-3-3 antibodies in newly diagnosed LVV patients. Methods.: Antibodies against three isoforms of 14-3-3 (γ, ɛ and ζ) were measured in 90 subjects: 48 GCA and 3 Takayasu's arteritis (TA) patients, and 39 controls (non-inflammatory and inflammatory diseases), using a multiplexed bead-based immunoassay and immunoprecipitation studies. The positive cut-off value was defined based on young healthy controls. Anti-14-3-3 IgG antibodies in LVV patients were compared with those in controls in order to assess their diagnostic performance, and the relationship of anti-14-3-3 IgG antibodies to the immunohistopathology of artery explants was assessed. Results.: Antibodies against all three 14-3-3 isoforms were detected in LVV patients as well as in age-matched inflammatory and non-inflammatory controls. Among LVV patients, detection of antibodies targeting 14-3-3 ɛ and ζ was associated with more severe disease. Detection of antibodies against 14-3-3 γ was linked to latent Toxoplasma gondii infection, a parasite that secrets a 14-3-3 homologue, suggesting potential cross-reactivity. Conclusion.: Detection of antibodies against 14-3-3 proteins at the time of LVV diagnosis is not disease-specific. Their presence at high levels in LVV patients with stroke, aortitis and-in a previous study-aneurysm formation may indicate an association with extensive tissue destruction. The relevance of 14-3-3 antibodies in non-LVV patients needs to be investigated in larger cohorts