51 research outputs found

    In Situ Characterization of Small-Particle Plasma Sprayed Powders

    Full text link

    Catalytic graphitization of three-dimensional wood-derived porous scaffolds

    Full text link

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    The effect of aggregate aspect ratio and temperature on the fracture toughness of a low cement refractory concrete

    No full text
    This work investigated the influence of the aggregate's aspect ratio on the fracture behavior of a low cement aluminum silicate refractory castable treated at two different temperatures (110 °C and 1000 °C). The aggregates were cylindrical pellets with an aspect ratio of 1, 2, 3 and 4, produced by extruding a mixture of clay and calcined alumina fired at 1600 °C for 4 h to yield mullite (3Al2O3.2SiO2). The behavior of the R-Curve and other relevant fracture parameters were evaluated based on the "Two Parameter Fracture Model" in a three-point flexure test of single-edge straight through notched specimens. The two temperature treatments produced different degrees of matrix-aggregate adhesion. The larger aspect ratio aggregates were found to promote toughening only in the dried condition, at 110 °C, while the specimens fired at 1000 °C for 4 h, regardless of their aggregate aspect ratio, displayed no significant toughening. The best results for fired samples, however, were obtained from specimens containing conventional angular aggregates

    Load partitioning in honeycomb-like silicon carbide aluminum alloy composites

    No full text
    A 50/50 vol.% Al/SiC composite was made via melt infiltration of an aluminum alloy into a porous beech wood-derived SiC preform. The honeycomb-like composite microstructure consisted of an interconnected SiC phase surrounding discrete Al “fibers” aligned in the growth direction of the beech wood. High energy synchrotron X-ray diffraction was used to measure the volume averaged lattice strains in both the SiC and Al phases during in situ compressive loading up to an applied stress of −530 MPa. Load transfer from the Al to the SiC was observed, and the Al yielded at an applied stress of above −213 MPa. The elastic behavior of the composite was modeled with both an isostrain rule of mixtures calculation and variational bounds for the effective elastic modulus. Furthermore, calculations of the von Mises effective stress of the SiC and Al phases showed that the wood-derived SiC was a more effective reinforcement than either SiC particle- or whisker-reinforced composites
    corecore